Monday, August 26, 2024
Impact of Deposition Mechanisms on Feature Sizes in Area-Selective Atomic Layer Deposition of TiO2 and HfO2
Sunday, August 25, 2024
Innovations in Atomic and Molecular Layer Deposition of Rare Earth-Based Functional Thin Films: Expanding Horizons in Electronics and Optoelectronics
In a recent article, researches from Germany (Bochum University) and Finland (Aalto University) explore the evolution and advancements in the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques for rare earth-based thin films, emphasizing their role in diverse applications ranging from microelectronics to optoelectronics and medical diagnostics. Initially focused on developing rare earth oxides as high-k dielectric materials in semiconductor devices, research has expanded to include complex ternary and quaternary perovskite oxides with unique magnetic and catalytic properties. The recent surge in ALD/MLD techniques has enabled the creation of rare earth-organic hybrid materials with intriguing luminescence properties, promising new avenues for applications in lighting, imaging, and solar cells.
The review also highlights the challenges associated with precursor development and the need for further research to optimize the chemical reactivity and long-term stability of these materials. The potential for these novel materials to revolutionize industries is significant, particularly in the creation of flexible devices and advanced optoelectronic applications. However, according to the article, achieving widespread industrial adoption will require continued collaboration between academia and industry to refine processes, enhance material performance, and ensure scalability.
Annually published ALD and ALD/MLD articles involving rare earth elements from 1992 to 2023. The publications were searched from Scopus and Web of Science, using search terms that included “atomic layer deposition” and “rare earth”, or “atomic layer deposition” and “lanthanide”. The data thus acquired were further manually refined to check for numbers as accurate as possible. Data were accessed lastly on 10-02-2024.
Saturday, August 24, 2024
Optimizing Atomic Layer Deposition Processes with Nanowire-Assisted TEM Analysis - Reducing Process Development CycleTimes by 80%
Researchers from Empa, the Swiss Federal Laboratories for Materials Science and Technology located in Switzerland, have developed a novel method to optimize Atomic Layer Deposition (ALD) processes using high-aspect ratio nanowires coupled with Transmission Electron Microscopy (TEM). By directly depositing materials onto nanowires placed on TEM grids, the team was able to conduct immediate post-deposition analysis, significantly speeding up the optimization of process parameters such as layer thickness, chemical composition, and conformality. This approach allows for rapid feedback and adjustment, reducing the time required to fine-tune ALD processes by a factor of five.
The study focused on optimizing the deposition of aluminum oxide using a standard trimethylaluminum (TMA) and water process. By varying cycle numbers, temperature, and pulse/purge times, the researchers identified optimal conditions for the ALD process, achieving a uniform and stoichiometric aluminum oxide layer. This method also revealed early-stage non-uniform growth in the initial cycles, providing new insights into ALD mechanisms. The researchers propose that this technique could extend beyond ALD to other deposition processes, offering a powerful tool for the rapid development and refinement of thin-film deposition technologies.
Wednesday, August 14, 2024
The 2024 1st Asian-Pacific Atomic Layer Deposition (AP-ALD) Conference Shanghai, China, from October 17 to 20, 2024
Tuesday, August 13, 2024
TSMC's 22ULL ReRAM with Ruthenium Layer Challenges Fujitsu's TaO-Based Technology with an Iridium layer in Embedded Memory Race
Techinsights reports (link below) that TSMC and Fujitsu are leading the charge in embedded ReRAM technology, with TSMC's new 22ULL eReRAM introducing a significant challenge to Fujitsu's established 40 nm TaO-based eReRAM. Both companies employ different resistive materials—Fujitsu uses a tantalum oxide (TaO) layer enhanced with an iridium layer, while TSMC incorporates a hafnium oxide (HfO) layer, paired with a ruthenium (Ru) layer, which enhances performance and reliability. TSMC's 22ULL platform, featuring this advanced HfO and Ru-based ReRAM, is set to challenge Fujitsu's position, especially in critical applications like automotive and IoT, where efficiency and capacity are paramount. With TSMC offering both eMRAM and eReRAM solutions, the competition between these technologies will significantly influence the future of embedded memory devices.
Other materials with similar resistive switching properties include: titanium oxide (TiOx), nickel oxide (NiO), zinc oxide (ZnO), zinc titanate (Zn2TiO4), Manganese oxide (MnOx), magnesium oxide (MgO), aluminum oxide (AlOx), and zirconium dioxide (ZrO2).
Sources:
TSMC vs. Fujitsu: A Brief Comparison of 22ULL Embedded ReRAM Technologies | TechInsights
South Korea's Exports Surge in August Driven by Semiconductors; SK Hynix Leads 1c DRAM Production, Samsung Confirms Investment for 2025 Launch; Both Giants to Adopt Next-Gen Photoresist Technologies
In the first 10 days of August 2024, South Korea's exports increased by 16.7% year-on-year, reaching $15.5 billion, driven primarily by a significant 42.1% surge in semiconductor exports. Other sectors like petroleum products and automobiles also saw growth, with automobile exports rising sharply by 63.9%. However, machinery product exports declined by 10.6%. Imports grew by 13.4% to $18.4 billion, resulting in a trade deficit of $2.9 billion. Notably, exports to major trading partners China and the United States increased by 10.7% and 27.7%, respectively. This continues a trend of export growth, marking the tenth consecutive month of gains as of July.
SK hynix has announced it will begin mass production of its 6th generation (1c) 10nm class DRAM in the third quarter of 2024, ahead of Samsung Electronics, which plans to start production by the end of the year. SK hynix has already established an internal road map to achieve customer certification and start production, potentially positioning itself to capture significant demand from major tech companies like Amazon and Microsoft once Intel certifies its DRAM for server use. The 6th generation DRAM, utilizing advanced Extreme Ultraviolet (EUV) lithography, promises higher chip yields and improved power efficiency compared to previous generations.
Samsung has confirmed its investment in the Pyeongtaek P4 plant for the production of 6th-generation 1c DRAM, with plans to begin mass production in June 2025. This next-generation DRAM, which uses 10nm-class technology, is still not commercialized globally, but Samsung and SK hynix are preparing for its mass production. Despite initial delays due to a downturn in the semiconductor market, Samsung is now expanding its P4 facility, initially installing NAND flash equipment and confirming plans for 1c DRAM production. The company also anticipates launching HBM4 using 1c DRAM by the second half of 2025, aligning with forecasts of significant growth in the memory industry's revenues.
Both Samsung and K Hynix plans to adopt Inpria's metal oxide resist (MOR) technology in the production of 1c DRAM, utilizing MOR to draw the finest lines on one of the five to six EUV layers in the 1c DRAM. This adoption aims to enhance performance and reduce costs in future DRAMs. MOR is seen as a next-generation alternative to the chemically amplified resist (CAR) currently used in advanced chip lithography, addressing CAR's limitations in resolution, etching resistance, and line edge roughness.
In 2021, JSR Corporation announced its acquisition of Inpria Corporation, the leading innovator in metal oxide photoresist technology for EUV lithography, solidifying its focus on advancing semiconductor materials.
Samsung is considering multiple suppliers for its EUV MOR photoresist needs beyond Inpria, including companies like Dupont, Dongjin Semichem, and Samsung SDI. These alternatives are currently being tested as the company explores the best options for its 1c DRAM production.
Lam Research refers to its inorganic photoresist technology as "dry resist," which reportedly is expected to be supplied for Gen 7 10nm (1d) DRAM production, anticipated to launch next year. This dry resist is deposited by ALD and represents a further evolution in PR technology, potentially offering enhanced performance for the next generation of DRAM manufacturing.
Exports increase 16.7 percent in first 10 days of August - The Korea Times
SK hynix Leads with ‘6th Generation 10 nm’ DRAM Production Ahead of Samsung - Businesskorea
SK Hynix to adopt Inpria MOR in 1c DRAM - THE ELEC, Korea Electronics Industry Media (thelec.net)
Samsung said to consider Inpria's metal oxide resist for 1c DRAM process (digitimes.com)
Monday, August 12, 2024
ALD for Industry, March 11-12, 2025 in Dresden
Sunday, August 11, 2024
Forge Battery Begins Shipping High-Energy 300 Wh/kg Lithium-Ion Cells Made in The USA
Forge Battery, a subsidiary of Forge Nano, has initiated the shipment of its advanced 21700 cylindrical lithium-ion battery cells, branded as “Gen. 1.1 Supercell,” to customers and potential partners. The cells, which boast a specific energy of 300 Wh/kg, have passed rigorous safety certifications (UN 38.3 and UL 1642), allowing for safe transportation. The company plans to deliver thousands of cells throughout 2024, fulfilling existing customer commitments and generating interest from new markets. These cells are designed with over 20% silicon in the anode and use NMC 811 cathodes, outperforming U.S. Advanced Battery Consortium (USABC) energy density targets and reducing costs by 20% per kWh.
The Supercells incorporate Forge Nano’s proprietary Atomic Armor™ coating technology, enhancing the durability and performance of the cells by preventing unwanted chemical reactions. With 90% of the materials sourced from U.S. suppliers, Forge Battery is set to become a key player in the domestic battery market, aiming for full-scale production at its upcoming North Carolina Gigafactory in 2026. These cells are targeted at high-performance applications, including electric trucks, aerospace, and defence, with the potential to outcompete current Tier 1 global suppliers.
Source:
Forge Battery Begins Bulk Customer Shipments of 300 Wh/kg Lithium-Ion Battery Cells - Forge Nano
JSR Corporation Completes Strategic Acquisition of Yamanaka Hutech Corporation to Bolster Semiconductor Materials Portfolio with CVD and ALD Precursors
On August 2, 2024, JSR Corporation announced the successful acquisition of Yamanaka Hutech Corporation, a renowned supplier of high-purity chemicals for the semiconductor industry. The acquisition, finalized on August 1, 2024, positions YHC as a wholly-owned subsidiary of JSR. This strategic move allows JSR to enhance its product offerings, particularly in semiconductor film-forming technologies, and aligns with its growth strategy aimed at strengthening its presence in the advanced semiconductor materials sector. JSR is committed to driving innovation, optimizing supply chains, and maintaining strong customer relationships as the semiconductor industry undergoes significant changes.
JSR Corporation's acquisition of Yamanaka Hutech Corporation (YHC) brings YHC's high-purity CVD and ALD precursors into JSR's portfolio, enhancing its capabilities in semiconductor materials. YHC, with over 60 years of expertise in advanced molecular design and synthesis technology, has a strong track record in supplying high-quality CVD/ALD precursors, particularly in competitive ALD material areas. This acquisition allows JSR to diversify beyond its traditional focus on photoresists and strengthens its position as a global leader in advanced semiconductor materials, poised to drive innovation in both miniaturization and device structure advancements.
Sources:
Jusung Engineering Posts Stellar Q2 Recovery with 207% Sales Surge, Driven by Semiconductor Market Rebound
Jusung Engineering reported a robust financial recovery in the second quarter of 2024, with sales soaring by 207% to 97.3 billion won ($72.0 million) compared to the same period last year, and an operating profit margin of 37%. This turnaround follows a challenging first quarter and is driven by increased orders and deliveries of semiconductor equipment, including a significant contract with SK Hynix for DRAM manufacturing in China. The company's expertise in Atomic Layer Deposition (ALD) technology and its expansion into OLED and solar power sectors position it well for continued growth as the semiconductor market rebounds.
Materion Achieves Record-Breaking Q2 Results, Strengthened by Consumer Electronics and Aerospace Growth
Materion is a major Tier 2 supplier of ALD precursors to the big Tier 1 companies. In the second quarter of 2024, Materion Corporation delivered record-breaking results, reflecting the company's recovery after a challenging start to the year. The improvement was primarily driven by organic growth initiatives, strong operational performance, and cost management. Key areas of growth included aerospace and defense, consumer electronics, and a gradual recovery in the semiconductor market. Despite some softness in industrial and automotive sectors, Materion secured several new business partnerships, particularly in aerospace and defense, bolstering long-term growth prospects. The company also achieved its midterm EBITDA margin target of 20% for the third time in five quarters and remains focused on operational excellence and sustainable earnings growth for the remainder of the year.
2024 Outlook
- Semiconductor market recovery slower than prior expectations
- Continued benefit from cost improvement initiatives
Specifically, Materion's expansion into ALD products has been significant for supporting advanced semiconductor production, especially in the context of rapid digitization and AI advancements. The company received an excellent supplier award from a leading ALD customer, highlighting its successful innovation in ALD materials. This expansion into ALD not only supports complex chip production but also positions Materion to capitalize on the growing demand in the semiconductor industry. Despite a slower-than-expected semiconductor market recovery, the company's strategic moves in ALD and other high-tech sectors are expected to drive continued growth and margin expansion in the future.
Materion Corporation has significantly expanded its capabilities in ALD products, particularly focusing on advanced materials for the semiconductor industry such as Hafnium and Molybdenum. The company produces ALD precursors, which are critical for creating the ultra-thin films required in the manufacturing of next-generation semiconductor chips. Recently, these materials also include tantalum and niobium-based compounds, which were added to Materion's portfolio following the acquisition of H.C. Starck's electronic materials business in 2021.
Materion's new facility in Milwaukee, Wisconsin, is dedicated to enhancing the production of these ALD materials, positioning the company as a key supplier in the high-growth semiconductor market. The facility also supports the development of next-generation battery technologies for electric vehicles, indicating the strategic importance of ALD materials in both semiconductor and EV markets
Sources:
Materion Corporation (MTRN) Q2 2024 Earnings Call Transcript | Seeking Alpha
ACM Research Advances in ALD with Ultra FnA Furnace System for Semiconductor Manufacturing
ACM Research, a US company specializing in wafer cleaning equipment for the semiconductor industry, presents a strong growth opportunity. The company beat Q2 estimates, raised its fiscal year guidance, and is well-positioned to benefit from the expected significant growth in the wafer cleaning equipment market, particularly in China. ACM Research's competitive advantages include high investment in R&D and the ability to provide highly customized solutions.
The Ultra FnA Furnace System by ACM Research is designed for the precise and uniform deposition of ultra-thin films using thermal Atomic Layer Deposition (ALD), which is essential for advanced integrated circuits (ICs) and compound semiconductor manufacturing as logic nodes shrink. It effectively deposits silicon nitride (SiN) and silicon carbide nitride (SiCN) on high aspect ratio 3D structures, such as FinFETs and nanosheets, ensuring good step coverage and uniformity across wafers. The system boasts superior process control through its innovative hardware and proprietary algorithms, offering high-throughput batch processing, cost-effectiveness, and customization for various advanced semiconductor processes, with the capability to process up to 100 wafers at a time.
About ACM Research
ACM Research offers a comprehensive portfolio of tools designed to support various semiconductor manufacturing applications, including ICs, compound semiconductors, wafer-level packaging, and wafer manufacturing. Their advanced product range includes solutions for multiple processing steps such as wet cleaning, electroplating, thermal deposition, ALD, and more. Known for delivering customized, high-performance technology that enhances productivity and efficiency, ACMR is committed to meeting the diverse needs of high-volume manufacturing with a low cost of ownership. With a strong IP portfolio and a global presence, ACMR leverages its extensive industry expertise and international support network to provide innovative solutions and world-class service to customers across Asia, North America, and Europe. Founded in California in 1998, the company operates manufacturing and support facilities in China and South Korea.
Sources:
Saturday, August 10, 2024
The AVS ALD ALE 2024 Conference in Helsinki - Record Breaking Attendance and Deposition Speed of ALD
#ALDALE2024 Plenary Talk provided by Tuomo Suntola with a full house. 50 Years in the making! @AVS_Members pic.twitter.com/9W106TGSWm
— Heather Korff (@HeatherKorff) August 5, 2024
Lotus Applied Technology reported: The research on ultra-high-speed spatial Plasma-Enhanced Atomic Layer Deposition (PEALD) introduces a novel approach to separating ALD half-reactions by leveraging a unique plasma-based mechanism. Instead of traditional differential flow and pumping, the process utilizes a gas shroud surrounding the plasma electrode, which facilitates the neutralization of oxidation radicals, preventing interaction with metal precursor vapors within the reactor. This method effectively separates the reactive species and allows for high deposition rates, achieving coating speeds over 25 angstroms per second for SiO₂ films. The process also includes innovations to reduce ozone byproducts, such as using carbon dioxide as the plasma gas and applying an active catalyst in the exhaust path (Lotus Applied Technology | Home).
ALD Program Chair:
Prof. Han-Bo-Ram (Boram) Lee
(Incheon National University, South Korea)
ALE Program Chair:
Prof. Heeyeop Chae
(Sungkyunkwan University, South Korea)
Friday, August 9, 2024
Lithography Materials Headed for Upwards Growth
Thursday, August 1, 2024
AVS ALD/ALE conference returns to Helsinki after 20 years to celebrate 50 years of ALD!
Thursday, July 18, 2024
Chipmetrics Launches New Test Chips for Advanced Atomic Layer Processes
Thursday, July 11, 2024
Tokyo Electron Introduces Acrevia Tool to Enhance EUV Lithography
Tokyo Electron has introduced Acrevia, a state-of-the-art gas cluster beam (GCB) system aimed at refining patterns created by EUV lithography. This advanced tool is set to reduce the necessity for EUV double patterning, thereby improving chipmaking yields and lowering production costs. Acrevia addresses critical challenges such as line edge roughness (LER), a common issue in lithography that affects the precision of pattern edges and overall chip performance. By optimizing pattern sidewalls through precise etching, Acrevia promises to significantly enhance within-wafer uniformity and mitigate LER, contributing to higher yield and better chip reliability. While not replacing High-NA EUV lithography, Acrevia marks a substantial leap forward in semiconductor manufacturing innovation.
Sources:
Chipmetrics' Metrology Workshop
Sunday, June 16, 2024
Boosting the Future: Increased ALD Use Paves the Way for Advanced GAAFET Technology
The Biden administration is considering a complete ban on the export of chips utilizing Gate All-Around Field Effect Transistor (GAAFET) technology to China, Bloomberg reports (LINK). The rationale behind this potential ban is the concern that such advanced transistors could be leveraged for military applications and artificial intelligence (AI) advancements by China. This move follows previous restrictions from 2022, when the U.S. barred its Electronic Design and Automation (EDA) companies from selling tools necessary for GAAFET development to China. In addition, advanced chip exports from companies like Nvidia were restricted, with these measures being progressively tightened and expanded over time.
Atomic Layer Deposition (ALD) is celebrating its 50th anniversary in 2024. The anniversary marks 50 years since Dr. Tuomo Suntola and his colleagues filed the first patent for Atomic Layer Epitaxy in 1974, which laid the foundation for ALD technology. This milestone will be celebrated at various events, including the ALD 2024 conference, where Dr. Suntola is expected to deliver the opening remarks .
The production of GAAFETs requires a significant increase in the use of ALD technology - maybe up to 40% more according to ASM. ALD is essential for creating the ultra-thin, uniform films needed for GAAFET structures, ensuring high-quality, defect-free layers that are critical for advanced transistor performance. This technology enables precise control over the deposition process, crucial for developing high-k dielectrics and other materials that enhance GAAFET performance and efficiency. As the semiconductor industry now transitions from FinFET to GAAFET technology, leveraging ALD's capabilities is vital for maintaining and advancing Moore's Law, enabling more powerful and energy-efficient chips using existing manufacturing infrastructure
Applied Materials has outlined next-generation tools essential for producing 3nm and GAA transistors, such as those in Samsung's upcoming 3GAE and 3GAP technologies. These advanced tools address the complexities of GAA transistor manufacturing, including precise lithography, epitaxy, and selective materials removal. Applied's Producer Selectra Selective Etch IMS tool is pivotal in defining channel width without damaging surrounding materials, while the Centura Prime Epi tool ensures clean deposition of Si and SiGe nanosheets. Additionally, their Integrated Materials Solution (IMS) systems integrate atomic layer deposition (ALD), thermal steps, and plasma treatments to optimize the gate oxide stack, enhancing performance and reducing gate leakage. These innovations are crucial as they enable higher performance, lower power consumption, and greater transistor density, aligning with the industry's move from FinFET to GAA technology.
Today GAA transistors are currently in mass production only by Samsung, which offered the technology to customers with its 3-nanometer process in 2022. Intel is set to follow, producing GAAFET on its 2-nanometer process expected to be available in its products later this year. TSMC, the market leader, plans to introduce GAAFET with its own 2 nm process in 2025. The GAAFET technology itself is not inherently suited for AI or military applications but represents an evolution in transistor design, enabling denser packing of transistors as lithography equipment and manufacturing processes advance. This technology shift, akin to transitioning to a new node, typically results in either reduced power consumption or improved performance by 15-25%.
The improvements facilitated by GAAFET could significantly enhance the capabilities available to China. SMIC, China's largest contract manufacturer, currently produces chips on a 7 nm process and is believed to be capable of reaching at least 5 nanometers with existing tools. The combination of this process with GAAFET could theoretically prevent China from falling too far behind Western advancements. However, China has been effectively shut out from developing GAAFET using tools from leading EDA companies, all of which are American. Additionally, the Dutch company ASML, dominant in the lithography equipment market, has not sold its EUV (Extreme Ultraviolet) machines to China and faced further restrictions in 2023 on selling its advanced DUV (Deep Ultraviolet) equipment. In April 2024, ASML took another step in the tech war against China by announcing that it would no longer service existing equipment in China, potentially crippling the country's semiconductor manufacturing capabilities. The specific details of the new export bans are still unclear, but Reuters notes that initial proposals have faced criticism from the U.S. semiconductor industry for being overly broad and extensive.
Source: USA överväger ytterligare GAAFET-sanktioner mot Kina – Semi14, www.ASM.com, Applied Materials Outlines Next-Gen Tools for 3nm and GAA Transistor Era (anandtech.com), Atomic layer deposition, next-gen transistors, and ASM (techfund.one)
ASML Unveils Hyper-NA EUV: Pioneering New Frontiers in Chip Innovation and Efficiency
Monday, June 10, 2024
Air Liquide signed major contract to support the semiconductor industry in the U.S. with an investment of more than 250 million dollars
Air Liquide has announced a significant investment exceeding $250 million to construct a new industrial gas production facility in Idaho, USA. This plant will supply ultra-pure nitrogen and other essential gases to Micron Technology, Inc., a leading semiconductor manufacturer, as well as other local customers. The facility, part of a long-term contract, will play a crucial role in the production of memory chips and is expected to be operational by the end of 2025. This project will generate hundreds of jobs during both the construction and operational phases and is designed to be highly efficient, incorporating digital technologies and modularization to ensure reliability and quick delivery.
Matthieu Giard, Chief Executive Officer of Americas for the Air Liquide Group, said
We are pleased to further strengthen our 30 year-long partnership with Micron Technology. Our partner’s trust in Air Liquide reinforces our position in the Electronics industry as a technology leader with strong innovation capabilities. This investment will support the production of leading-edge memory chips, notably to meet the growing demand for computing capacities required by Artificial Intelligence. This contract illustrates our strategy to further accompany our customers in their development, including in the U.S. The Electronics activity is a strong driver of our 2025 strategic plan ADVANCE, which closely links financial and extra-financial performances.
This initiative exemplifies Air Liquide's commitment to technological advancement and environmental sustainability in the semiconductor sector. The new production unit will be 5% more power-efficient than previous generations and aims to use 100% renewable energy within five years. Matthieu Giard, CEO of Americas for Air Liquide, highlighted the long-standing partnership with Micron Technology and the strategic importance of this investment in supporting the demand for advanced memory chips, driven by the rise of artificial intelligence. Scott Gatzemeier of Micron Technology emphasized the project’s role in enhancing the U.S. semiconductor supply chain, driving significant growth in domestic material sourcing, and bolstering the semiconductor ecosystem across the country.
NCD Co., Ltd. has supplied ALD equipment for manufacturing perovskite solar cells to Korea Electric Power Corporation
About NCD Co., Ltd:
NCD Co., Ltd. is a rapidly growing Korean company specializing in the development and manufacturing of ALD (Atomic Layer Deposition) and CVD (Chemical Vapor Deposition) equipment. Founded in 2010 and based in Daejeon, NCD focuses on providing advanced equipment, process development, coating services, and consulting for industries such as solar cells and OLED displays. Their innovative solutions aim to enhance efficiency and productivity in high-volume manufacturing.
For more information, visit their official website: NCD Tech.