Wednesday, June 29, 2016

National Taiwan University Places Follow-On Order For ALD System From Ultratech Cambridge Nanotech

SAN JOSE, Calif., June 29, 2016 /PRNewswire/ -- Ultratech, Inc. (Nasdaq: UTEK), a leading supplier of lithography, laser-processing and inspection systems used to manufacture semiconductor devices and high-brightness LEDs (HB-LEDs), as well as atomic layer deposition (ALD) systems, today announced that National Taiwan University's (NTU) Nanoelectronic and Nanophotonic Materials Laboratory (NNML) has selected the Fiji G2 ALD system for their research activities. The NNML will serve as a focal point of collaborative research with Ultratech-CNT, as well as a demonstration site for customers interested in Ultratech-CNT's ALD systems. 
 
 
The Fiji series is a modular, high-vacuum ALD system that accommodates a wide range of deposition modes using a flexible architecture and multiple configurations of precursors and plasma gases.
 
While NTU is currently working with several Ultratech ALD systems, Professor Miin-Jang Chen, Taiwan's leading ALD researcher and head of the NNML, said, "We are planning to use the new Fiji G2 system to deposit a range of materials that are not easily accessible using a standard ALD system. We plan to take advantage of the Low Vapor Pressure Delivery (LVPD) option in developing advanced ternary and quaternary materials as part of our research into high-quality III-nitride atomic layer epitaxy, metallic nanostructures for plasmonics and surface-enhanced Raman scattering, advanced high-K/metal gate stacks, and ferroelectric negative capacitance for nanoelectronics. We have been working with the Savannah and Fiji ALD systems for over eight years and have found them to be excellent research tools. Our decision to move forward with our most recent purchase and to establish a collaborative relationship with Ultratech-CNT was based on our confidence in the performance of these products and in the consistency of support we have always received from the Ultratech-CNT staff over the years."

Ultratech-CNT Vice President of Research and Engineering, Ganesh Sundaram, Ph.D., said, "Our long-term relationship with Professor Chen is a testament to the durability and productivity of our systems. Professor Chen's ALD research is highly regarded, and we are extremely pleased that he has chosen to work in partnership with us. We believe this collaboration will provide us with key opportunities to interact with his group on a scientific basis and allow researchers interested in ALD access to learn more about our instruments and their use by visiting the NTU facility."

Ultratech Fiji G2 ALD System
For advanced thin films, the Fiji series is a modular, high-vacuum ALD system that accommodates a wide range of deposition modes using a flexible architecture and multiple configurations of precursors and plasma gases. The result is a next-generation ALD system capable of performing thermal and plasma-enhanced deposition. Ultratech CNT has applied advanced computational fluid dynamics analyses to optimize the Fiji reactor, heaters, and vapor trap geometries. The system's intuitive interface makes it easy to monitor and change recipes and processes as required. The Fiji is available in several different configurations, with up to six heated precursor ports that can accommodate solid, liquid or gas precursors, and up to six plasma gas lines. Options include a built-in ozone generator, Load Lock as well as several in-situ analysis tools, which offer significant experimental flexibility in a compact and affordable footprint.

Atomic Layer Etch Heats Up - ALE 2016 Ireland up next

In less then a month the ALE 2016 Workshop is on together with ALD2016 in Ireland. Here is a fresh article on ALE by Mark Lapedus at Semiconductor Engineering:

The atomic layer etch (ALE) market is starting to heat up as chipmakers push to 10nm and beyond. ALE is a promising next-generation etch technology that has been in R&D for the last several years, but until now there has been little or no need to use it. Unlike conventional etch tools, which remove materials on a continuous basis, ALE promises to selectively and precisely remove targeted materials at the atomic scale.

It now is moving from the lab to the fab. Applied Materials, for example, has officially entered the next-generation etch market by rolling out a new tool technology. Applied describes its technology as an “extreme selectivity” etch tool, although the system basically falls in the generic category of ALE.

Meanwhile, Hitachi High-Technologies, Lam Research and Tokyo Electron Ltd. (TEL) are also working on ALE tools.

Saturday, June 25, 2016

Nordic NanoLab User Meeting Trondheim, Norway, 9-10 May 2017

NTNU NanoLab, NTNU Norwegian University of Science and Technology Trondheim, Norway, 9-10 Mai 2017



Welcome to attend and contribute to the first Nordic Nanolab User Meeting 2017 at NTNU NanoLab, NTNU Norwegian University of Science and Technology, 09 –10 May! This is the third user meeting organized on a Nordic level continuing the long tradition of Myfabs user meetings. We look forward to two days of interesting presentations, technical workshops and presentations of your work at the poster session, as well as a visit to NTNU NanoLab and other laboratory facilities at NTNU. We expect around 200 participants from 10 cleanrooms in all the Nordic countries.



Preliminary program at a glance: 

The program of the meeting will include several plenary talks and thematic seminars on Materials Analysis and Characterisation, Thin Film Technologies, Etching Technologies and Lithography. The meeting will finish with lab tours to visit NTNU NanoLab, NorTEM, RECX and the MBE facilities (preliminary list). The meeting is associated by a technical exhibition of cleanroom related equipment. More detailed information regarding the exhibition will be sent out in autumn 2016.

Registration will open in January 2017

Flyer: 

Nanostraw microdevices fabricated using ALD to deliver drugs


 (From Nanotechweb) Researchers in California have designed microdevices that can adhere to the lining of the gastrointestinal (GI) tract and release therapeutic drugs slowly. The devices are sealed with nanostraws that also protect the loaded drug from enzymes in the GI.

 
(A) SEM images show that microdevices have intact nanostraw membranes. (B) Confocal fluorescence microscopy of nanostraw devices. Courtesy: ACS Nano : ACS Nano DOI: 10.1021/acsnano.6b00809

Increasing drug uptake

The researchers made their nanostraw membranes using track etch and atomic layer deposition. They then incorporated the membranes into the microdevices using polymer deposition, photolithography and reactive ion etching steps.

“We load drugs into the device reservoirs by diffusion,” explains team member Cade Fox. “The devices could then be administered orally, and we would expect them to adhere to the lining of the GI tract and release drug towards GI tissue at high concentrations for prolonged durations, thereby increasing drug uptake.” 



Fabrication of Sealed Nanostraw Microdevices for Oral Drug Delivery

Cade B. Fox, Yuhong Cao, Cameron L. Nemeth, Hariharasudhan D. Chirra, Rachel W. Chevalier, Alexander M. Xu, Nicholas A. Melosh, and Tejal A. Desai
 
ACS Nano, Article ASAP
 
The oral route is preferred for systemic drug administration and provides direct access to diseased tissue of the gastrointestinal (GI) tract. However, many drugs have poor absorption upon oral administration due to damaging enzymatic and pH conditions, mucus and cellular permeation barriers, and limited time for drug dissolution. To overcome these limitations and enhance oral drug absorption, micron-scale devices with planar, asymmetric geometries, termed microdevices, have been designed to adhere to the lining of the GI tract and release drug at high concentrations directly toward GI epithelium. Here we seal microdevices with nanostraw membranes—porous nanostructured biomolecule delivery substrates—to enhance the properties of these devices. We demonstrate that the nanostraws facilitate facile drug loading and tunable drug release, limit the influx of external molecules into the sealed drug reservoir, and increase the adhesion of devices to epithelial tissue. These findings highlight the potential of nanostraw microdevices to enhance the oral absorption of a wide range of therapeutics by binding to the lining of the GI tract, providing prolonged and proximal drug release, and reducing the exposure of their payload to drug-degrading biomolecules.

Development of safe and durable high-temperature lithium-sulfur batteries by ALD

(From Nanowerk News) Safety has always been a major concern for electric vehicles, especially preventing fire and explosion incidents with the best possible battery technologies. Lithium-sulfur batteries are considered as the most promising candidate for EVs due to their ultra-high energy density, which is over 5 times the capacity of standard commercial Li-ion batteries. This high density makes it possible for electric vehicles to travel longer distances without stopping for a charge. 
 
 
Scheme of MLD alucone coated C-S electrode and cycle performance of stabilized high temperature Li-S batteries. (Figure from Nanowerk News)

However, batteries operating at the high temperatures necessary in electric vehicles presents a safety challenge, as fire and other incidents become more likely.

Prof. Andy Xueliang Sun and his University of Western Ontario research team, in collaboration with Dr. Yongfeng Hu and Dr. Qunfeng Xiao from the Canadian Light Source, have developed safe and durable high-temperature Li-S batteries using by a new coating technique called molecular layer deposition (MLD) technology for the first time. This research has been published in Nano Letters ("Safe and Durable High-Temperature Lithium–Sulfur Batteries via Molecular Layer Deposited Coating").


Read more: Development of safe and durable high-temperature lithium-sulfur batteries

BALD 2016 is approved for inclusion in the IEEE Conference Publication Program

2016 14th International Baltic Conference on Atomic Layer Deposition (BALD)

The 14th Baltic Conference on Atomic Layer Deposition (BALD) will be arranged in St. Petersburg, Russia, where Prof. V.B. Aleskovskii with his colleagues and assistants created the foundations of ALD in the 1950´s. The aim of the Conference is to demonstrate recent developments in the areas of technology and applications of Atomic Layer Deposition (ALD) and to show contribution of the Russian research centres to ALD applications.

 
Valentin Borisovich Aleskovsky (Russian: Валенти́н Бори́сович Алеско́вский; 3 June 1912 - 29 January 2006) was a Soviet scientist and administrator known for his pioneering research on surface reactions underpinning the thin film deposition technique that years later became known as Atomic Layer Deposition. He was the rector of Leningrad Technological Institute (1962-1975) and of Leningrad State University (1975-1986) [Wikipedia]


 
BALD 2016 is approved for inclusion in the IEEE Conference Publication Program. BALD 2016 will provide possibilities to publish results of recent studies on atomic layer deposition (ALD) and to initiate and support collaboration between research groups working in this field and applications: from advanced electronics, microsystems, and displays to energy capture and storage, solid state lighting, biotechnology, security, and consumer products - particularly for any advanced technologies that require control of film structure in the nanometer or sub-nanometer scale.

Abstract submission deadline: 25 Jun 2016

Full Paper Submission deadline: 15 Sep 2016

Final submission deadline: 30 Sep 2016

Notification of acceptance date: 30 Jun 2016

Friday, June 24, 2016

Harvard University initiates ALD patent infringement suits towards US chip makers

Harvard University initiates patent infringement suits to protect inventors’ rights in atomic layer deposition alkyl amide precursor used for High-k applications like DRAM and other high aspect ratio capacitor based technologies. 
 
 

Harvard has now filed patent-infringement suits against two major US chip makers, Micron and Globalfoundries. The University believes that these companies have violated patents that claim inventions created in Gordon’s lab of famous ALD Prof. Roy Gordon.
 
The article in The Harvard Gazette reports:
 
Over a few years, Gordon, his graduate students Jill Becker [Founder of Cambridge Nanotech] and Dennis Hausmann [Lam Research], and postdoctoral fellow Seigi Suh [DuPont] would play central roles in making that high-k dielectric insulator work. Their primary innovation, filed at the U.S. Patent Office in 2000 and described in scientific papers in 2001 and 2002, was to create a novel carrier molecule, one never before seen outside of Gordon’s lab, as well as to identify a class of precursor molecules ideally suited to use in a method called atomic layer deposition (ALD) to create thin films. This precursor molecule delivered the insulator where it had to go. Once there it released the metal atoms to form a uniform layer, while its other components — such as carbon, nitrogen, and hydrogen — were easily removed, leaving behind the pure insulator layer.

Isaac T. Kohlberg, Harvard’s senior associate provost, said it’s important that Harvard protect the intellectual property rights of faculty, postdoctoral researchers, students, and the University itself, particularly in an era when corporations increasingly look to academia for significant advances in science, engineering, and technology.

Here you can read the whole intriguing story from Gordon Lab in the Harvard Gazette : Defending breakthrough research. Here is also one of the well cited publications form 2002 on using TEMAHf and TEMAZr and water in deep trench DRAM stuctures (from Infineon) by Hausman et al : http://faculty.chemistry.harvard.edu/files/gordon/files/aldhf_3.pdf

There are many angles to this story and it will be interesting to follow this case.

Wednesday, June 22, 2016

Hydrogen Peroxide Gas Delivery for ALD, Annealing, and Surface Cleaning in Semiconductor Processing

In order for IDMs and Foundries to follow Moore’s Law, semiconductor engineers have been forced to continuously shrink semiconductor device dimensions, so that some barrier layers are as thin as 3 atoms. Semiconductor processes affected by shrinkage include atomic layer deposition (ALD), annealing, wafer cleaning, thermal oxidation, thin film growth, etching, and interface layer passivation. Present materials used in semiconductors can breakdown at this atomic scale and must be replaced by new materials to meet low power consumption, high performance and low cost targets. These new replacement materials come with their own set of process challenges.

Atomic Layer Depostion


ALD has been used in high-volume semiconductor manufacturing since 2004 [1] and according to Chuck del Prado, CEO of ASMi, one of the world-leading companies in the field [2]:

“ALD is now firmly established as a key enabling technology. Today, ALD has become a critical technology for the manufacture of virtually all leading-edge semiconductor devices. The leading customers in our industry have already ramped several device generations based on our ALD equipment – for high-k metal gate applications in logic and foundry and for multiple patterning applications in the memory sector.”
 

The 3D challenge in high aspect ratio structures


The new atomically ultrathin films are more sensitive to environmental conditions than thicker structures from past design nodes. Precise cleaning and preparation is required to prevent atoms from straying into other layers. Complicating the process is that these layers are no longer planar, but are three dimensional shapes with very high aspect ratios approaching 150:1 for DRAM memory cell capacitors and 3DNAND flash memory charge trap devices, creating inverted skyscrapers on an atomic layer.


Samsung presented a low cost manufacturing of 20 nm DRAM and beyond at IEDM2015 using honeycomb structure narrow gap air-spacer technology (left). For visualisation, here (right) the advanced High Aspect Ratio etch and ALD that is required for 3DNAND flash memory manufacturing in a reverse engineering cross section by Chipworks from a SAMSUNG V-NAND Flash array.
Processing at the bottom of these extremely deep structures is nearly impossible. There are two main challenges:
  1. Chemicals must be stable enough to reach the bottom, but reactive enough to be effective when they contact the bottom target site.
  2. Low temperatures are needed to prevent migration of atoms in and out of the layers, so the chemicals must be active at low temperatures.
Chemicals used today for thin film oxidation do not meet these manufacturing challenges. This has forced R&D engineers to look for alternatives. The range of oxidants in use today include water, ozone and O2 plasma. Yet, in one way or another, all of these oxidants are deficient for fabrication of these new device structures under atomic level constraints. To address these challenges, RASIRC has developed a new technology that enables the common liquid oxidant, hydrogen peroxide, to be converted into a controlled and repeatable oxidant gas. This new product is called the Peroxidizer®. 
 

Hydrogen Peroxide Gas (HPG)

RASIRC specializes in products that generate and deliver gas to fabrication processes. Each unit is a dynamic gas plant in a box—converting common liquid chemistries into safe and reliable process gas on demand.. First to generate ultra-high purity (UHP) steam from de-ionized water, RASIRC technology can now also deliver hydrogen peroxide gas in controlled, repeatable concentrations.

Hydrogen Peroxide Gas (HPG) is a powerful and versatile oxidant for processing new materials and 3D structures. HPG is now available in stable, high concentration and offers significant benefits to ALD, annealing and cleaning applications. The Peroxidizer is an order of magintude improvement over its predecessor and overcomes the limits of pre‐humidification and high concentration H2O2 liquid supply by concentrating liquid inside the vaporizer. It handles gas flows of 5 to 30 slm in vacuum or atmospheric conditions. It delivers H2O2 concentrations from 12,500 to 50,000 ppm, which equates to 1.25 to 5% gas by volume. The Peroxidizer delivers a 4:1 water to Peroxide ratio. This is not possible with other high temperature vaporization methods due to H2O2 decomposition.

The membrane used in the vaporizer preferentially vaporizes H2O2 relative to water. This allows the concentration to stay below 75% and 90°C in the vaporizer while being able to generate 50,000 ppm. The fab only needs to supply 30% w/w, which is already in use throughout most facilities.


The above frames illustrate the Peroxidizer concentration process. At top, vaporizer is filled with 30% w/w H2O2. As move to the bottom, carrier gas passes through vaporizer solution and water vaporizes preferentially. Last frame shows that solution has reached mass balance and stable, high concentration H2O2 can be sent to process.

Hydrogen peroxide is a hazardous chemical and must be handled properly to prevent exposure of operators to unsafe chemical conditions. With proper design, installation, and operator training, hydrogen peroxide can be a viable alternative to other oxidants. The Peroxidizer includes a range of safety features focused on temperature, concentration, pressure, liquid and gas leak detection, venting and liquid handling. 

H2O2 is auto‐refill capable. If a continuous supply of 30% H2O2 liquid is available, the Peroxidizer can run 24/7. For R&D, the Peroxidizer can be manually refilled with an internal source container to run 4 to 24 hours depending on flow rate.
  • Primary interlock loop will shutoff power when any of a number of safety conditions occur.
  • Temperature safeties include redundant thermal interlocks with thermal switches for heaters.
  • H2O2 liquid and headspace temperatures are interlocked into the safety control loop.
  • Concentration safety features include level sensors for overfill and low liquid conditions. If liquid level is too low, an alarm is displayed and carrier gas turned off to prevent further liquid concentration.
  • Pressure safety features include direct pressure monitoring, pressure relief, and direct vent lines to channel high pressure vapor directly to scrubbed exhaust in case of overpressure conditions.
  • Leak safety features include a flood sensor to detect liquid leaks.
  • The system is ducted for exhaust ventilation to prevent HPG exposure in case of H2O2 liquid or gas leak. A ventilation pressure switch will trigger the interlock loop if ventilation is not adequate. A ppm HPG monitor is recommended in the exhaust ducting.
  • The drain line has a float switch to monitor for drain back up.
  • An optional condenser is available to condense HPG and water vapor before it goes to vent. Alternatively, scrubbers can be used to convert HPG directly to oxygen and water. 
To learn much more about the operating principles and process demonstration results from the HPG technology you can download a paper here: „Hydrogen Peroxide Gas Delivery for Atomic Layer Deposition, Annealing, and Surface Cleaning in Semiconductor Processing“, By Jeffrey Spiegelman, Russ Holmes and Zohreh Shamsi [Link] 
Dan Alvarez, CTO of RASIRC, will be presenting a poster entitled „Hydrogen peroxide gas for improved nucleation and initiation in ALD“ at The 16th International Conference on Atomic Layer Deposition (ALD 2016). He will also be presenting a paper entitled „Novel anhydrous hydrazine delivery for low temperature silicon nitride passivation of SiGe(110)“. RASIRC will also have an exhibit at stand 48. This will be a three-day meeting dedicated to the science and technology of atomic layer controlled deposition of thin films. The conference will take place on 24-27 July 2016 at the Convention Centre Dublin, Ireland. This is an excellent opportunity to meet Dan Alvarez and RASIRC founder and President Jeff Spiegelman to learn more about ther exciting HPG technology. 
Dan Alvarez CTO (left) and RASIRC founder and President Jeff Spiegelman (right).  

Refernces
[1] “2004 -The Year of 90-nm: A Review of 90 nm Devices”, Dick James, Chipworks Inc. Advanced Semiconductor Manufacturing Conference and Workshop, 2005 IEEE/SEMI, Munich, Germany.]
[2] ASMi Annual Reporting (2015)  

·