Showing posts with label Medical technology. Show all posts
Showing posts with label Medical technology. Show all posts

Friday, November 3, 2023

Nanexa AB Concludes Rights Issue on Nasdaq First North Growth

Nanexa AB's rights issue, aimed at raising SEK 121m, concluded with a 34.7% subscription rate using rights and without. The company will utilize guarantee commitments for the remaining 27.1%. The rights issue, announced on September 21 with backing for 62% of the total, resulted in 33.5% of shares subscribed with rights and 1.2% without. The capital raised before transaction costs will be SEK 75m. Trading in BTAs will occur until registration is completed around week 45, 2023, with the new shares expected to trade on Nasdaq First North Growth by week 46, 2023.

Nanexa, founded in 2007, has evolved from working with Atomic Layer Deposition (ALD) technology for various applications to focusing on the pharmaceutical sector with its proprietary PharmaShell® system. PharmaShell® positions Nanexa in the burgeoning drug delivery market with a system that allows high-precision, long-acting injectable drug products. The company is developing its own products and also partners with multiple pharmaceutical firms, including AstraZeneca, leveraging the unique capabilities of its ALD-based technology to enhance drug delivery.


The controlled release is steered by modulating the coating thickness, the composition of the coating and process parameters. We are currently primarily using nontoxic aluminum oxide and zinc oxides in the ALD coating

Sources:

Tuesday, August 22, 2023

Nanexa's Breakthrough: Lenalidomide Controlled Release Confirmed in Phase 1 Study

Nanexa AB, a pioneering pharmaceutical company, has unveiled a significant advancement in the realm of drug delivery. The company recently revealed exciting results from its Phase 1 study, designated NEX-20-01, which underscored the controlled release of lenalidomide in varying doses over a span of up to 21 days.

Atomic Layer Deposition (ALD) is a cutting-edge technique used in medical and pharmaceutical applications, particularly in the development of Nanexa's PharmaShell® technology. ALD's precision in depositing thin layers of materials plays a vital role in creating the controlled-release shell of PharmaShell®. This nanoscale engineering ensures accurate drug delivery, regulating release rates and optimizing therapeutic effects. PharmaShell® benefits from ALD's versatility, enhancing drug efficacy, minimizing side effects, and allowing tailored treatment plans. ALD's role in crafting PharmaShell® exemplifies its impact in advancing drug delivery systems, revolutionizing pharmaceutical care.


The study, conducted with great precision and care, involved nine healthy volunteers who were administered either one or two subcutaneous single injections of the innovative NEX-20A formulation. This formulation encompassed doses ranging from 15 to 35 mg of lenalidomide, with a maximum cumulative dosage of 50 mg. The outcome was nothing short of remarkable, as the observed pharmacokinetic data from the human participants correlated excellently with the projected exposure calculated from preclinical studies.

Central to the accomplishment was the remarkable release mechanism employed by Nanexa, known as PharmaShell®. This ingenious approach ensured a controlled and gradual release of the drug into the participants' bodies, creating a plasma curve that spanned an impressive 21 days. A critical observation from the study was the initial low release of the total dosage within the first day. This gradual release strategy plays a pivotal role in maintaining optimal levels of the drug in the bloodstream throughout the treatment period.

Equally encouraging was the confirmation that the total exposure of lenalidomide in the plasma—measured as the area under the curve (AUC)—escalated proportionally with the administered dose. This finding aligns with the expectations and demonstrates the efficacy of the PharmaShell® system in achieving the desired therapeutic outcomes.

Nanexa's CEO, David Westberg, expressed his enthusiasm regarding this groundbreaking achievement. "This is an important achievement for Nanexa, to once again demonstrate that we can predict the release profile of PharmaShell® in humans based on preclinical data," he shared. Westberg also revealed the company's forward-looking plans, stating, "We are now continuing to optimize the formulation and are ready to plan for the next clinical study of NEX-20 in patients. In that study, where we plan to increase the dose, we want to ensure that we will continue to minimize local reactions, and we see good results from preclinical studies on how this can be done."

Safety, of course, remains a top priority in such endeavors. Nanexa is committed to compiling comprehensive safety and tolerability data, which will be meticulously assessed following the final follow-up visits for the last dose group in October. Encouragingly, the study thus far has reported limited and transient injection site reactions, with no unexpected severe or systemic side effects. This bodes well for the continued development and progress of the NEX-20 project.

Nanexa's accomplishments in the controlled release of lenalidomide mark a significant milestone not only for the company but also for the entire field of pharmaceuticals. The ability to meticulously regulate the release profile of drugs while simultaneously minimizing undesirable side effects holds great promise for revolutionizing patient care and treatment outcomes. As Nanexa continues to pave the way with its innovative approach, the future of pharmaceuticals looks more promising than ever.

Nanexa AB - Nanexa obtains pharmacokinetic data from the NEX-20 Phase 1 study confirming controlled release of lenalidomide

Thursday, December 22, 2022

Swedish Nanexa signs Evaluation Agreement with and issues a directed shares to Novo Nordisk for ALD based PharmaShell(R)

Nanexa AB (publ) (“Nanexa” or the “Company”) today announces that the Company has signed a Material Transfer and Feasibility Study Agreement (the “Evaluation Agreement”) with leading global pharmaceutical company Novo Nordisk A/S (”Novo Nordisk”) for the evaluation of Nanexa’s drug delivery system PharmaShell® with Novo Nordisk products. As part of the Evaluation Agreement, Nanexa will receive payments of approximately SEK 46.1 million for providing Novo Nordisk exclusivity and performing work under the Evaluation Agreement, whereof approximately SEK 41.7 million is an upfront payment at signing. In connection with the signing of the Evaluation Agreement, the board of directors of Nanexa also resolved, based on the authorisation granted by the annual general meeting held on 9 June 2022, to carry out a directed share issue to Novo Nordisk of 10,000,000 shares at a subscription price of SEK 1.72 per share (the “Directed Share Issue”) through which Nanexa raises gross proceeds of approximately SEK 17.2 million. The subscription price is equivalent to a premium of 33 percent versus the closing price yesterday for the Company’s shares. In total, Nanexa will thus receive approximately SEK 63.3 million from the Evaluation Agreement and the Directed Share Issue.


Novo Nordisk is a leading global pharmaceutical company engaged in the research, development, manufacture and commercialization of pharmaceutical products and associated devices for treatment of diabetes, obesity and other diseases. Under the Evaluation Agreement Novo Nordisk will provide Nanexa with its products and Nanexa will develop a long-acting injectable using the PharmaShell® drug delivery system. The new formulation will be evaluated in preclinical studies by Novo Nordisk. As part of the Evaluation Agreement, Nanexa receives a fee of USD 4.0 million for providing Novo Nordisk exclusivity to use PharmaShell® in combination with Novo Nordisk products, valid throughout the term of the exclusivity, and USD 0.425 million for the work performed under the Evaluation Agreement. The combined fees of USD 4.425 million correspond to approximately SEK 46.1 million. Throughout the exclusivity period Novo Nordisk has the option to negotiate a license agreement. Nanexa will be able to continue the development of its own product project (NEX-22) within the field of type 2 diabetes throughout the exclusivity period.

In connection with the signing of the Evaluation Agreement, Novo Nordisk invests SEK 17.2 million in Nanexa in the Directed Share Issue. The Directed Share Issue comprises 10,000,000 shares issued at a subscription price of SEK 1.72 per share. The subscription price is equivalent to a premium of 33 percent versus the closing price for the Company’s shares on Nasdaq First North Growth Market as per yesterday, 20 December 2022 (the “Closing Price”) and a premium of 10 percent versus the volume weighted average price of the last twenty (20) trading days for Nanexa’s shares on Nasdaq First North Growth Market preceding 20 December 2022 (the “20-day VWAP”). Following the Directed Share Issue, Novo Nordisk’s ownership in Nanexa will amount to approximately 16.5 percent of the Company’s shares and votes. The Directed Share Issue results in a dilution of approximately 16.5 percent of the Company’s shares and votes. The number of shares of Nanexa after the Directed Share Issue will amount to 60,695,626 and the share capital of Nanexa will increase by approximately SEK 1,294,213.58 to approximately SEK 7,855,310.32. Additionally, Novo Nordisk undertakes as part of the Directed Share Issue to subscribe for its pro-rata portion of any future rights issue conducted prior to 31 December 2023 up to a maximum of USD 2.0 million. The undertaking is conditional on certain terms being met.

The net proceeds from the Directed Share Issue will primarily be used to strengthen the Company’s financial position, and to enable planned preclinical and clinical studies as well as other value creating activities supporting PharmaShell® and the NEX projects.



The purpose of the Directed Share Issue, and the reason for deviation from the preferential rights of the shareholders, is (i) in a time and cost efficient manner acquire capital and to finance the joint development project between the Company and Novo Nordisk pursuant to the Evaluation Agreement , (ii) to add a strategically important and financially strong shareholder, who wishes to participate in the future development of the Company, to its shareholder base, (iii) that Novo Nordisk will bring valuable industry and sector knowledge to the Company, and (iv) that a rights issue, as opposed to a directed issue, would not ensure that Novo Nordisk actually becomes a shareholder in the event that the rights issue is fully subscribed. The board further believes that it would entail a risk that the Company cannot accommodate the capital needs associated with its business plan at favourable terms in the current market situation. Consequently, the overall assessment of the Board of Directors is that the reasons for carrying out the Directed Share Issue in this way, in this specific case, outweigh the reasons justifying the main rule of issuing shares with preferential rights for existing shareholders, and that a new issue with deviation from the shareholders' pre-emption rights is therefore in the interests of the Company and all shareholders.

The subscription price has been determined through arm's length negotiations between the Company and Novo Nordisk. The subscription price exceeds the Closing Price by 33 percent and the 20-day VWAP by 10 percent. Existing shareholders have therefore had good opportunities to acquire shares on similar or more favourable terms recently. As the subscription price in the Directed Share Issue not insignificantly exceeds both the closing price and the 20-day VWAP, the board of directors considers that it has been ensured that the subscription price is on market terms.

Göran Ando, Chairman of the board, comments:

"I am very pleased that we through the Evaluation agreement and the Directed Share Issue can give Nanexa good conditions to continue developing the Company into a world leading drug development company for long-acting injectables, based on our unique PharmaShell® technology. The collaboration with Novo Nordisk further strengthens Nanexa’s portfolio of partner projects with a good opportunity to develop into a more extensive development program and long-term license agreement. The deviation from the shareholders' pre-emptive rights is not a decision taken lightly, but the possibility to reach a solution under prevailing volatile market conditions with a premium, as well as adding Novo Nordisk as strategic partner, was a strong reason."

Tuesday, November 23, 2021

Picosun Group has launched an ALD Medical Materials Library

Picosun Group has launched a Medical Materials Library consisting of over ten materials intended for medical-related coating and encapsulation with ALD.


"Picosun’s Medical Materials Library targeted to the medical device manufacturer segment reflects the innovative spirit of the company. I’m really excited over the fact that we are able to flexibly design tailored encapsulations according to our customers’ needs. I’m especially proud of our medical customers and partners who are already in pre-clinical and clinical trials with their ALD coated devices”, says Juhani Taskinen, Vice President, Medical Business Area of Picosun Group.



The materials library is a reflection of over six years extensive research and development that shows ALD can render biocompatibility to a substrate coated with Picosun library materials. Biocompatibility tests were carried out according to ISO standards in accredited third-party laboratories. The performed tests included for example cytotoxicity, antimicrobial activity, skin irritation or sensitization, hemocompatibility, bacterial endotoxins, bioburden and sterilization residuals. From the tested materials Picosun is able to design tens of different types of end materials according to customer needs.

ALD technology provides dimensionless coating thus enabling miniaturization of components and devices in the field of electronic implants. Antibacterial function together with excellent barrier properties and outstanding corrosion resistance pave the way for using the materials both in electronic and orthopedic implants and show high potential in pharmaceutical packaging. The superior film uniformity and conformality ensure a pinhole-free coverage over even the smallest details of the device.


Tuesday, November 9, 2021

ALD Webinar on Coatings for Electronic Implants

Tune into Picosun's webinar on Thursday 16th December 2021, 4PM CET, to discuss the benefits of ALD compared to the conventional coating methods used in electronical implants!
 



Digital healthcare has seen a tremendous development during past years with implantable electronics being part of ever-increasing number of treatment plans for patients. Consequently, need for advanced medical devices is rapidly expanding with ever tightening requirements as increasing number of complex therapeutic devices are implanted on the most sensitive areas of the body such as brain, spine, heart and eyes.

To ensure long lifetime and to reduce potential side effects in such environment, particular attention needs to be paid to the protective and biocompatible coating providing hermetic sealing, structural integrity and corrosion resistance to protect the device from the detrimental impact due to human body environment and to prevent the device releasing harmful substances to the surrounding tissue. The perfect protective coating therefore needs to be a biocompatible, pinhole-free barrier capable of uniformly coating devices with widely varying sizes and shapes to render them inert towards human body and vice versa, for decades after implantation.

Traditional thick film coating methods such as CVD, PVD or parylene tend to have limited utility on one or more of the requirements above. Atomic Layer Deposition (ALD) technology allows fabrication of ultra-thin, highly uniform and conformal material layers of exact thickness to atomic level and chemical composition on a variety of substrates, including highly temperature-sensitive organic materials. The technology was originally brought into large scale use by the semiconductor industry but has after that been applied to a variety of applications, including the latest MedTech innovations. Using ALD as the coating method for electronical implants improves patient safety as well as ensures longer lifetime and improved reliability for the implant.

Picosun’s ALD solutions have been in production for years at various medical industries including electronical implant protection. The coatings have been tested and proven to be non-cytotoxic, biocompatible, and to have antibacterial or bioactive function.

Join our webinar to learn more how ALD will revolutionize the MedTech industry, especially in the field of electronical implants, and create added value and competitive edge to your products. We will present the latest results on the superior hermeticity of our ALD encapsulants as a protective barrier against human tissue fluid. We have proven results on suppression of bacterial growth and ultra-low levels of bacterial endotoxins, surpassing even the strictest requirements of implant industries.

Key Learning Objectives
The benefits of ALD compared to the conventional coating methods used in electronical implants
Practical examples how Picosun’s biocompatible, hermetic ALD encapsulant coatings can improve the operational reliability, lifetime and safety of electronical implants

Sunday, September 19, 2021

ALD can improve surgical tools like scalpel blades and much more

A recent article published in MDPI (LINK) discusses a study where zinc oxide thin film was deposited on surgical knife blades with ALD. The study shows that surgical instruments coated with non-allergenic metal oxide coatings containing metal structures that reduce the growth of bacteria could significantly decrease the risk of undesirable reactions of the body during and after surgery.


"The use of ALD methods in medicine allows us to enter a completely new generation of in vivo medicine. The ALD method makes it possible to meet the high requirements regarding mechanical and anti-corrosion properties, chemical and thermal resistance, as well as biocompatibility for tools used in medicine."

Here ALD coatings performed in a Picosun R 200 System have been investigated by Polish researchers.

Application of ALD Thin Films on the Surface of the Surgical Scalpel Blade

1
Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a Str., 44-100 Gliwice, Poland
2
Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, Towarowa 7 Str., 44-100 Gliwice, Poland
3
Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
*
Author to whom correspondence should be addressed.
Academic Editor: Angela De Bonis
Coatings 202111(9), 1096; https://doi.org/10.3390/coatings11091096
Received: 11 August 2021 / Revised: 3 September 2021 / Accepted: 7 September 2021 / Published: 11 September 2021


Wednesday, May 26, 2021

Vaccines perfected from the atoms up - Forge Nano technology enables next-gen vaccine formulation platform using ALD

Vaccines perfected from the atoms up - Forge Nano technology enables next-gen vaccine formulation platform using Atomic Layer Deposition.


The vaccine of the future is here. Designed from the atoms up, this disruptive technology platform enables; thermally stable, combined-dose, time released, single injection vaccines!

Forge Nano platform technology is being used to develop innovative vaccines that can withstand higher temperatures, combine multiple doses, and release over time, all in one injection. Using Atomic Layer Deposition, these vaccine formulations can be controlled at the atomic level.

VitriVax, Inc. a Colorado based formulation technology company, utilizes Forge Nano’s Atomic Layer Deposition platform technology to engineer thermostable, single-shot vaccines across a broad range of indications. Using the cGMP certified PANDORA ALD tool, developed and manufactured by Forge Nano, VitriVax uses its proprietary Atomic Layering Thermostable Antigen and Adjuvant (ALTA™) technology platform to enable thermostable, single-shot vaccines, that can be applied to a wide variety of antigens and adjuvants to project against thermal and chemical degradation, and enable controlled release, incorporating prime doses + additional booster doses in a single-shot administration.

VitriVax’s vaccine formulation platform addresses both of these challenges by enabling vaccines to be made thermostable up to 70°C (158°F), and the combination of prime and boost doses into a single injection with timed release, eliminating the need for a follow up injection. The platform uses a technology called atomic layer deposition (ALD) to coat the active ingredient in the vaccine with a protective layer of adjuvant (commonly used in vaccines to stimulate immune response). That coating then slowly dissolves to release the dose inside. The current generation of ALD system in use by VitriVax operates at the scale of around 1000 doses per run. (LINK)


“In light of the current global pandemic, vaccine storage, distribution, and efficacy has never been more important. We are proud to see our platform being used to make vaccines that can be more easily transported, with more efficient and precisely controlled doses. Future technologies are being enabled by controlling things at the atomic level. Our platform is being used every day to enable precision and control at the atomic scale.” Dr. Paul Lichty- CEO Forge Nano.

Forge Nano specializes in optimizing the way surfaces interact at the atomic level. Using proprietary technology, Forge Nano can apply nano coatings onto the surface of virtually anything. Forge Nano’s platform technology unlocks a level of precision and control that is unrivaled by other surface engineering technologies.

About VitriVax, Inc:

Based in Boulder, CO, VitriVax’s mission is to eliminate barriers to global vaccination. Through its ALTA formulation platform, and driven by a world-class team of scientists, engineers and entrepreneurs with expertise in vaccine development, virology and chemical engineering, VitriVax is dedicated to significantly increasing the availability of human and animal vaccines around the world.

Saturday, May 1, 2021

Nanexa AB started the first clinical study with ALD based PharmaShell® at the Karolinska University Hospital

Nanexa AB (publ) today announces that the company has started its first clinical study with PharmaShell®, a phase I study in Nanexa's product project NEX-18, at the Karolinska University Hospital.


The study aims to show that the company's NEX-18 product, a long-acting formulation of azacitidine (the active substance in the drug Vidaza), provides the desired safety and pharmacokinetic profile. In the study, two doses of NEX-18 will be studied. The study will be conducted at Karolinska University Hospital in Stockholm and Akademiska Sjukhuset in Uppsala.

“The start of this study is a very big milestone in Nanexa's development. It is with great enthusiasm that we now see that the study is getting started. We expect the study to be completed during the third quarter.”, said David Westberg, CEO of Nanexa.

The NEX-18 product is being developed to improve the treatment of MDS (Myelodysplastic Syndrome), a form of hematological cancer that mainly affects the elderly. This is done by utilizing the unique properties of the PharmaShell® concept to create a controlled release depot formulation. Today's treatment means that injections are given at hospitals seven days in a row each month. The goal of the NEX-18 project is to simplify treatment by only having to give one injection. In addition to greatly simplifying for patients, Nanexa sees that NEX-18 will provide significant cost savings compared to current treatment.

“With the results of this study, we intend to continue the clinical development with a phase II study to achieve clinical Proof of Concept. After that, the goal is to run NEX-18 further towards commercialization, either through a license partner or as an own project, whatever option is deemed to create most value for Nanexa”, said David Westberg.

ALD – The coating technology behind the drug delivery system PharmaShell®

The technology used by Nanexa to manufacture the shells that make up PharmaShell® is Atomic Layer Deposition (ALD). In ALD, reactive gases are used which, with atomic layer by atomic layer, build up a surface coating with high precision. ALD has been used in the electronics industry for decades and is thus well established for larger scale production and automation.

ALD can also be used at low temperatures, down to room temperature, unlike other surface coating techniques which usually use considerably higher deposition temperatures, thereby risking inactivating the drug. A further advantage of ALD is that the coating is carried out under dry conditions, which makes it possible to coat drugs that are quickly dissolved in water or other solvents.

By building up an atomic layer for atomic layer with ALD, the thickness of the coating can be controlled with extremely high precision. Drug particles of various sizes and shapes can be coated since the only thing required for coating to be formed is that the reaction gases can reach the surface.
About Nanexa AB (publ)

Nanexa AB is a nanotechnology drug delivery company focusing on the development of PharmaShell®, a new and groundbreaking drug delivery system with great potential in a number of medical indications. Within the framework of PharmaShell®, Nanexa has partnership agreements with among others, AstraZeneca.

Friday, April 16, 2021

ALD coating for delayed drug delivery via the lungs for the treatment of respiratory diseases by Astra Zeneca and TU Delft

The medical thin film coating segment is a mature and growing market for CVD & PVD coating equipment and ALD is an emerging segment. Applications are :
  • electronic implants (IC, BioMEMS, Pacemaker) 
  • prosthetic implants (spine, trauma, hip, knee, dental)
  • active pharmaceuticals ingredients for  delayed drug delivery

ALD has slowly but steadily moved into the field of medical and pharmaceuticals. Just as some examples Nanxa AB in Sweden and Applied Materials has a joint venture and Picosun in Finland and Veeco has very active business unit and offer ALD systems specifically for medical applications for several years. As well as several reports on applications such as dental, tissue engineering, smart lenses, and various electronic or prosthetic implants.

Here is a new application explored by Dutch TU Delft and British-Swedish Astra Zeneca using ALD coating for delayed drug delivery via the lungs for the treatment of respiratory diseases.

Controlled Pulmonary Delivery of Carrier-Free Budesonide Dry Powder by Atomic Layer Deposition
ACS Nano 2021, XXXX, XXX, XXX-XXX
Publication Date:March 26, 2021, https://doi.org/10.1021/acsnano.0c10040



Ideal controlled pulmonary drug delivery systems provide sustained release by retarding lung clearance mechanisms and efficient lung deposition to maintain therapeutic concentrations over prolonged time. Here, we use atomic layer deposition (ALD) to simultaneously tailor the release and aerosolization properties of inhaled drug particles without the need for lactose carrier. In particular, we deposit uniform nanoscale oxide ceramic films, such as Al2O3, TiO2, and SiO2, on micronized budesonide particles, a common active pharmaceutical ingredient for the treatment of respiratory diseases. In vitro dissolution and ex vivo isolated perfused rat lung tests demonstrate dramatically slowed release with increasing nanofilm thickness, regardless of the nature of the material. Ex situ transmission electron microscopy at various stages during dissolution unravels mostly intact nanofilms, suggesting that the release mechanism mainly involves the transport of dissolution media through the ALD films. Furthermore, in vitro aerosolization testing by fast screening impactor shows a ∼2-fold increase in fine particle fraction (FPF) for each ALD-coated budesonide formulation after 10 ALD process cycles, also applying very low patient inspiratory pressures. The higher FPFs after the ALD process are attributed to the reduction in the interparticle force arising from the ceramic surfaces, as evidenced by atomic force microscopy measurements. Finally, cell viability, cytokine release, and tissue morphology analyses verify a safe and efficacious use of ALD-coated budesonide particles at the cellular level. Therefore, surface nanoengineering by ALD is highly promising in providing the next generation of inhaled formulations with tailored characteristics of drug release and lung deposition, thereby enhancing controlled pulmonary delivery opportunities.

Sunday, February 28, 2021

WEBINAR - Longer-lasting implants with hermetic ALD coatings by Picosun

Register for free for Picosun Group 's webinar "Longer-lasting implants with hermetic ALD coatings" where we present our latest results and ALD solutions for medical implant manufacturers. 27 April at 3PM London/10AM New York time.

Registration and information: LINK

Improved reliability and functionality for electronic and orthopedic implants with Picosun’s ALD solutions

With the boom of digital and remote healthcare and the increasing life expectancy of people, there is a rapidly growing need for more and more advanced medical devices, both implanted and external. At the same time, recent advances in microelectronics and the constantly miniaturizing size of the components enable the design of highly sophisticated implanted devices that can be placed in the most sensitive areas of the body such as the brain, spine, heart, and eyes.

Picosun’s Atomic Layer Deposition (ALD) thin film coating technology offers a disruptive solution for implant manufacturers. Hermetic ALD encapsulation improves the reliability, functionality, and lifetime of electronic and orthopedic implants, potentially reducing the need for corrective or replacement surgeries. Also, cost savings can be achieved when the base materials of the implant can be e.g. stainless steels instead of noble or specialty metals.



Friday, February 12, 2021

Safer medical devices with Picosun’s antimicrobial ALD coatings

ESPOO, Finland, 12th February 2021 – Picosun Group, the leading provider of AGILE ALD® (Atomic Layer Deposition) thin film coating technology and solutions, reports excellent aseptic properties measured from its ALD materials.

“The aseptic properties of our ALD films are so excellent that they surpass even the strictest requirements of the medical implant industry."

Numerous ALD oxide coatings deposited with Picosun’s processes showed remarkable reduction of microbial growth and had low values of bacterial endotoxin contamination(*). The coatings were characterized by an independent third party laboratory according to ISO 22196:2011 antimicrobial standard and ANSI/AAMI ST72:2019 bacterial endotoxin standards. These results, along with the earlier tests validating the non-cytotoxicity of Picosun’s ALD films, prove the safety and aseptic benefits of these materials in medical devices, both implanted and external ones.



Millions of people worldwide live with medical implants and the trend is towards even more complex solutions that combine highly advanced microelectronics with miniaturized devices embedded into sensitive areas of the body such as brain, spine, eyes, and heart. Protecting these devices from the corrosive environment of the human body, and vice versa, is of utmost importance considering the safety, correct operation, and lifetime of the implant.

Picosun is the trailblazer in providing medical ALD solutions to device manufacturers. Picosun’s ultra-thin, biocompatible ALD coatings guarantee hermetic encapsulation of the implanted device, with a fraction of film thickness compared to other coating methods and with superior film uniformity and conformality, ensuring pinhole-free coverage over even the smallest details of the device. Extended lifetime and operational reliability of the implant reduces the need for corrective or replacement surgeries, thus saving expensive hospital stays and improving the patient’s quality of life. For manufacturers, hermetic protective coating enables use of more common base materials, e.g. stainless steels instead of precious metals, which in turn makes the manufacturing process easier and saves costs.

“The aseptic properties of our ALD films are so excellent that they surpass even the strictest requirements of the medical implant industry. We are excited to bring our new, advanced medical ALD solutions to the market and help our customers keep spearheading their industries with safer, longer-lasting and user-friendly products,” states Juhani Taskinen, Head of Medical Business Area of Picosun Group.

Friday, December 18, 2020

Nanexa AB signs USD 3 million Investment Agreement with Applied Materials to scale-up GMP production site for ALD-coated pharmaceuticals

Nanexa AB (publ) today announced that the company has entered into an investment agreement with Applied Ventures, LLC, the venture capital arm of Applied Materials, Inc., whereby Applied Ventures intends to invest up to USD 3 million in Nanexa during 2021 to support continued development and expansion. USD 1 million will be invested in January 2021 and additional investments of up to USD 2 million are planned later in 2021. The investment will be made through a directed issue to Applied Ventures of a mix of shares and share warrants decided upon by Nanexa with support of the authorization of the Annual General Meeting held on June 2, 2020 (the “Directed Issue”).


As announced today in a separate press release, Nanexa and Applied Materials have entered into a joint development agreement to validate, adapt and scale up Nanexa’s production of ALD-coated injectable drugs. Simultaneously, Nanexa has entered into an investment agreement with Applied Ventures, pursuant to which Nanexa has undertaken to, as authorized by the Annual General Meeting held on June 2, 2020, resolve to issue up to a total of 4 244 770 new shares and share warrants of series 2020/2021 in Nanexa, and Applied Ventures has undertaken to subscribe for newly issued shares and share warrants. In total, Applied Ventures has committed to invest at least USD 1 million, but the Directed Issue is intended to raise around USD 3 million before transaction costs.

“We are very pleased to welcome Applied Ventures as a new industrial investor in Nanexa. Their support is a great recognition of the PharmaShell® technology and Nanexa’s future potential,” says David Westberg, CEO of Nanexa.

The Directed Issue is divided into two tranches where the first tranche amounts to an investment of USD 1 million. The subscription price for the shares of the first tranche shall equal the volume weighted average price (“VWAP”) during the period from and including December 22, 2020 until and including January 11, 2021, less five percent. The SEK investment amount in the first tranche shall be determined by the average USD/SEK exchange rate during the same measurement period.

For the second tranche Applied Ventures has the option, but not the obligation, to exercise warrants of series 2020/2021 to subscribe for up to the number of shares equal to 4 244 770 shares less the number of shares issued in the first tranche. The warrants can be exercised during two different subscription periods; 1-15 April 2021 and 1-15 December 2021. Applied Ventures will take a decision on how many warrants to exercise in each subscription period. The subscription price in the second tranche shall equal the VWAP during the ten trading days immediately preceding the respective subscription periods, less ten percent.

The maximum potential dilution from the Directed Issue is 16.7 percent of the number of shares in Nanexa after the Directed Issue and full exercise of the issued share warrants.

“Applied Ventures is excited to invest in Nanexa and help the company scale up its unique approach of using an atomic layer deposition process on APIs to enable key benefits for the end drugs. This is a good example of how Applied’s core competency in materials engineering can be extended to new markets. It also reflects Applied Ventures’ focus on investing globally in companies across their full life-cycle and adds to our growing portfolio of investments in Europe,” said Anand Kamannavar, Global Head of Applied Ventures.

About Applied Ventures
Applied Ventures, LLC, the venture capital arm of Applied Materials, invests in innovative technology companies globally that have the potential to deliver exceptional strategic and financial returns. Its investments help develop technologies and markets that provide natural extensions to Applied Materials’ core business and stimulate the application of materials engineering for semiconductors, displays, and related products and services. Learn more at www.appliedventures.com or follow @Applied_VC.

About Nanexa AB (publ) (LINK)

Nanexa AB is a nanotechnology drug delivery company focusing on the development of PharmaShell®, a new and groundbreaking drug delivery system with great potential in a number of medical indications. Within the framework of PharmaShell®, Nanexa has partnership agreements with among others, AstraZeneca.

Friday, November 22, 2019

The US Patent Office has approved Nanexa’s expanded patent application for the drug delivery platform PharmaShell®

[Press release, Nanexa AB LINK] The US Patent Office has today approved another patent application for Nanexa. The currently approved patent has broader protection than the patent that was approved earlier this year and includes the use of PharmaShell® products for multiple administration methods, such as parenteral injection, inhalation, and oral preparations.



Monday, November 4, 2019

Picosun expands selection of biocompatible ALD materials for medical applications

ESPOO, Finland, 4th November 2019 – Picosun Group, the leading supplier of AGILE ALD® (Atomic Layer Deposition) thin film coating solutions for global industries, expands its selection of biocompatible ALD materials to be used in medical applications.

Picosun’s TiO2 and Al2O3 processes are already used in production of surgical implants and in drug particlecoating for controlled drug delivery. Now, also HfO2, SiO2, ZrO2, Nb2O5, Ta2O5, AlN and TiN ALD films manufactured by Picosun have been tested and validated by an independent third party to be non-cytotoxic and safe to human tissues in e.g. implant applications (*).

This wide variety of materials gives great flexibility in designing novel ALD solutions for a plethora of healthcare uses, when the materials can be used either as such, or combined into nanolaminates or doped films with unique, application-wise tailorable physico-chemical properties (**). 

 
 
Microimplant electronics protected by Picosun’s ALD HfO2. No changes after soaking in 87 oC PBS for over 3 months which correlates to over 10 years in human body. T0 = starting point of the test. Reference: InForMed project, image source CEA-Leti.
 
ALD, with its innate ability to create ultra-thin material layers with the highest conformality, uniformity, and structural quality, has enormous potential to solve various key issues in medical applications where implantable devices are involved. Orthopaedic implants, pacemakers, implantable hearing or eyesight aids, microimplants for sensing, monitoring and analysis applications, and brain or heart probes for therapeutic or diagnostic uses all contain parts that are sensitive to the corrosive environment of the human body. Protective encapsulation of these devices is thus needed to ensure their correct operation, long enough operational lifetime, and also to protect the body from the possible rejection reaction or contaminant leakage from the devices’ corroding parts. Various polymer layers have typically been used as encapsulants, but their downside is their thickness and robustness which unnecessarily increases the mass and dimensions of the implant.  

 
TEM micrographs of Picosun’s ALD nanolaminate and oxide encapsulants after one month soaking tests in 87 oC PBS. No corrosion observed.
 
Compared to polymer encapsulation, ALD offers a truly elegant, sophisticated solution to implant manufacturers. Practically massless and invisible, but still dense, flexible, pinhole- and crack-free ALD thin films cover reliably even the smallest microscale surface features of the coated object, they can be applied at moderate temperatures, and – as now analysed in medical industry’s standard tests – several ALD materials are intrinsically biocompatible. As ALD is a mature, key enabling technology in semiconductor and microelectronics manufacturing for decades already, the processes and practises for industrial introduction and ramp-up exist, and can be readily applied to new fields as well.

”Healthcare sector is one of our key strategic directions. Our patented know-how of ALD-based biocompatible protective encapsulation for implantable medical devices has already raised significant interest amongst industry leading companies. We are pleased that we have now even wider portfolio of materials and solutions that we can provide to these companies. Not only can our ALD technology solve several challenges these industries are currently facing, but also enable completely new components and devices to realize future’s healthcare inventions,” states Dr. Jani Kivioja, CTO of Picosun Group.
 
(*) FICAM – The Faculty of Medicine and Health Technology, University of Tampere, Finland: Cytotoxicity tests with cell culture medium according to the ISO 10993-5 standard, and 3 weeks soaking tests in PBS (phosphate-buffered saline) at 87 oC.

Tuesday, June 11, 2019

Swedish Nanexa’s PharmaShell® patent approved in Japan

[Nanexa AB, LINK] The Japanese Patent Office has approved Nanexa’s patent application for the drug delivery platform PharmaShell®.

Nanexa’s drug delivery system PharmaShell® is suitable for parenteral drug administration. The drug delivery system enables drug release in a well-controlled manner from a couple of weeks to really long depots of up to one year. By adjustments in the manufacturing process of PharmaShell®, the depot time can be controlled to the desired length.


The properties of PharmaShell®, with extremely high so-called drug load and the ability to control the initial release, make it unique in the market. The system enables depot preparations from simple small molecule drugs to proteins. The mentioned properties are in demand by the pharmaceutical industry to create new and more effective drugs with the possibility of limiting the side effects of the drug.

The Japanese Patent Office has approved Nanexa’s patent application on May 30, 2019. The now approved patent covers the product PharmaShell® itself and the method of its manufacture and formulation of PharmaShell® coated drugs. The approved patent has patent number JP6516729.

CEO David Westberg comments:

In January, we got the PharmaShell® patent approved in the US and I can now conclude that it has also been approved in Japan. The Japanese market is large and important for Nanexa and with an approved patent our commercial opportunities in the future will increase.

Our continuous work on patent applications begins to yield results and together with our more recently filed patent applications, I assess that we have a strong patent portfolio.

Previous News on Nanexa:

Nanexas PharmaShell® patent approved in the United States

Nanexa order a third Picosun ALD System to meet production demand for PharmaShell®

Nanexa has completed a safety laboratory for the PharmaShell® process

New method using ALD enables storage and controlled release of pharmaceutical substances in the body


Monday, June 3, 2019

Picosun strengthens its presence in the healthcare industries

ESPOO, Finland, 29th May 2019 – Picosun Group, the global provider of AGILE ALD™ (Atomic Layer Deposition) thin film coating solutions, continues its breakthrough into healthcare industries by supplying ALD technology to produce bioactive coatings on surgical implants at a major, leading manufacturer.

In the recent couple of years, healthcare industries have truly awakened to the endless possibilities ALD offers to them. As the population ages, the need for various ‘spare parts’ of the body, such as artificial hips, knee joints, dental implants, and stimulators for heart or brain functions grows. Along with the increasing miniaturization of implantable microelectronics and wireless sensors, remote health monitoring and therapeutics is also becoming commonplace.

“Picosun has worked with medical companies for a long time, for example with Russian-based implant manufacturer Conmet LLC, and with Swedish Nanexa AB, who uses ALD for drug particle surface functionalization for targeted and controlled drug delivery. We also collaborate with several universities where medical ALD technology is developed. These projects have given us unique insight into this business, which is quite different from the semiconductor industries, the most typical ‘playground’ for ALD,” says Mr. Juhana Kostamo, Managing Director of Picosun Group.

The common fact to all implantable medical devices is that they need protection from the rather hostile environment inside human body. Body fluids are corrosive so the implant must be isolated from them, and vice versa – the body needs to be protected from possible rejection reaction or metal ion leakage caused by the implant. This is where ALD, with its capability to form intrinsically biocompatible, reliably hermetic and ultra-thin sealing around the implanted device, shows its strength. ALD encapsulation increases the implant lifetime and safety, potentially reducing the number of replacement surgeries or ‘maintenance’ operations of the implanted device.

“Our PicoMEDICAL™ solutions are tailored especially to the needs of medical industries that are often still new to ALD. We provide not only the equipment, but the whole chain starting from application consultancy to equipment and process optimization, production ramp-up and comprehensive after-sales support to ensure our customers’ production keeps running smoothly and with minimum downtime. We are happy that we have been chosen as the ALD solutions provider to a yet new prominent customer in this field. Our technology shows again its agility and the potential to improve the quality of life for so many implant patients now and in the future,” continues Mr. Kostamo.

Picosun provides the most advanced ALD thin film coating technology to enable the industrial leap into the future, with turn-key production solutions and unmatched expertise in the field. Today, PICOSUN™ ALD equipment are in daily manufacturing use in numerous major industries around the world. Picosun is based in Finland, with subsidiaries in Germany, North America, Singapore, Taiwan, China and Japan, offices in India and France, and a world-wide sales and support network. Visit www.picosun.com.

Wednesday, May 22, 2019

Picosun provides the leading thin film coating solutions for medical industries

(Picosun, 21 May 2019) Picosun is the leading provider of AGILE ALD™ (Atomic Layer Deposition) thin film coating technology for healthcare industries. Picosun’s biocompatible ALD coatings enable safer and longer lasting products, more compact sensing, therapeutic, and analysis devices, and novel medical applications such as micro implants, smart ablation catheters, and deep brain stimulation probes. Picosun’s PicoMEDICAL™ ALD solutions are already in production use in healthcare industries in depositing bioactive coatings on surgical implants and functionalizing the surface of drug particles for controlled drug delivery.
Application examples:

Dental and orthopedic implants, surgical fixators Read more 

•    Improved osteointegration with bioactive TiO2 thin films
•    Biobarriers for encapsulation against metal ion leakage into tissue fluid


Pacemakers and other implantable electronic devices, microimplants Read more 
  • Hermetic biobarrier encapsulation of the device electronics against the effect of tissue fluid
Others
  • Medical MEMS, sensors, and Lab-on-a-Chip devices
  • Controlled/targeted drug delivery
  • Hydrophobic/hydrophilic coatings
  • Functional coatings on powder materials
  • Extremely thin films on stents

The PICOSUN™ P-300B and P-1000 large-scale batch ALD systems are specially designed for coating surgical implants, implantable medical devices, microimplants, and medical MEMS, sensors, and Lab-on-a-Chip devices.

Friday, January 4, 2019

Nanexas PharmaShell® patent approved in the United States

The US Patent Office has approved Nanexa's patent application for the PharmaShell® drug delivery platform.

Nanexa AB is a nanotechnology drug delivery company focusing on the development of PharmaShell®, which is a new and groundbreaking drug delivery system that is expected to have great potential in a number of medical indications. Within the framework of PharmaShell®, Nanexa has partnership agreements with among others, AstraZeneca.

The US Patent Office has approved Nanexa's patent application on January 1, 2019. The now-approved patent covers the product PharmaShell® as well as the method of its manufacture and formulation of PharmaShell® coated drugs. The approved patent has patent number US 10166198.

CEO David Westberg comments:

It is with great satisfaction that I can now conclude that the PharmaShell® patent is approved in the United States. We have always felt secure in our patent situation, but it still means a lot to get it confirmed by the US Patent Office. The US is our largest market and now that we have an approved patent, we can have a more interesting position in discussions with potential partners.

Source : Nanexa (in Swedish, LINK)

Nanexa order a third Picosun ALD System to meet production demand for PharmaShell®

[Picosun, LINK] ESPOO, Finland, 4th January 2019 – Picosun Group, a leading, global supplier of ALD (Atomic Layer Deposition) thin film coating technology, and Nanexa AB, a nanotechnology company focused on nano-enabled drug delivery solutions, solidify their collaboration in pharmaceutical ALD.


Picosun is now delivering their third ALD system to Nanexa’s facilities in Sweden, where it will be utilized in production expansion of nano-functionalized pharmaceuticals for drug delivery. Stock-listed Nanexa AB has two patents pending for their technology platform PharmaShell®. With this technology, ALD-functionalized pharmaceuticals can stay effective in the body for long periods of time and have a tailored release profile that minimizes side effects and eliminates the need for constant re-dosing. Picosun has been aiding Nanexa in their undertaking to develop their technology to an industrially mature state by supplying ALD tool solutions and consultancy.

Picosun provides various ALD solutions specially optimized to meet the needs of the medical industries where quality, reliability, efficiency, patient safety and minimized side effects are of utmost importance.

“We are very pleased to order our third PICOSUN™ ALD system. We have reached a point where the demand from our commercial partner to invest in our technology platform PharmaShell® is rapidly increasing. To be able to meet this demand we are now procuring a new ALD tool to extend our production capacity for efficient delivery of materials to our customers,” says David Westberg, CEO of Nanexa.

“We are happy to provide yet more PICOSUN™ ALD equipment to our long-time partner Nanexa, where our technology is used in manufacturing state-of-the-art medicines to combat some of the most difficult diseases. Our aim is to utilize ALD to enable solutions that benefit the whole humanity, which is why we are especially glad that healthcare industries are now seizing the potential of ALD on so many fronts,” continues Dr. Jani Kivioja, CTO of Picosun.