Friday, December 22, 2017

Advanced Cooling Technologies develops high temperature water repellent glass fibre textile

There has been many reports of coating textile and fiberes with ALD to enhance barrier properties or strengthen the material for use in e.g. kevlar for bullet proof clothing. 




Recently a US based company, Advanced Cooling Technologies, Inc., have developed hydrophobic and water-repellent glass fiber cloths by ALD of a ceramic coating. The ALD-coated cloth has proven to perform very well at high temperature around 200 °C as well.  Please check out the performance in the video below.


Through a NAVY SBIR project, R&D engineers in ACT developed durable hydrophobic glass fiber cloths by atomic layer deposition (ALD) of a ceramic coating on glass fiber cloths. (youtube.com)

ALD NanoSolutions Prepares particle coating CVR for Factory Installation

Here is some ALD news for Boulder Colorado just before the Holiday Season (teaken from their excellent e-mail News letter) - Merry Christmas and Happy New Year to the ALD experts in Boulder and elsewhere! 

  • ALD NanoSolutions Prepares CVR for Factory Installation
  • ALD Nano’s Coated Materials were on the International Space StationInternational
  • Organization for Standardization (ISO) Compliance for ALD-Coated Commercial Powders 
As reported in a previous edition of the ALD NanoSolutions Enews (see ALD Nano Enews: Vol. 2, Issue 3), the company announced commercial-scale validation of its continuous ALD reactor system equipment for particles. 

ALD NanoSolutions Prepares CVR for Factory Installation

As reported in a previous edition of the ALD NanoSolutions Enews (see ALD Nano Enews: Vol. 2, Issue 3), the company announced commercial-scale validation of its continuous ALD reactor system equipment for particles. The key aspects of that article are in italics below:

The scientific, process development and engineering teams at ALD Nano have spent considerable resources over the past few years rapidly developing this first-of-its-kind technology from research scale, bench-top to the current commercial-scale systems. A continuous vibrating reactor, or CVR, provides ALD coating capacity of more than three tons per day and 1,200 tons per year of particle materials. These techniques gained from equipment development open up new pathways for ALD Nano's growth. The CVR is a spatial ALD reactor system and can also be utilized for MLD techniques, run at atmospheric or pressurized conditions, and fitted with various features such as plasma.

The company is scheduled to install the first of its CVR reactor systems, second-generation design, in a commercial advanced materials coating production facility in the US in Q1 2018. An important milestone to compliment this type of state-of-the-art progress at the ALD Nano facility in Broomfield, Colorado. Additional CVR reactor systems are to be installed in other commercial materials production facilities over the next few years. Let us know if you have an ALD coating need for advanced materials that requires this level of scale.

Tuesday, December 19, 2017

EFDS ALD for Industry 2018 Workshop, Exhibition & Tutorial 21-22 March, Dresden

A topical workshop with focus on industrialization and commercialization of ALD for current and emerging markets

Atomic Layer Deposition (ALD) is used to deposit ultra-thin and highly conformal films. ALD is unique in the sense that it employs sequential self-limiting surface reactions for growth in the monolayer thickness regime.

According to market estimates the equipment market alone is currently at an annual revenue of US$ 1.5 - 1.7 billion (2017) and it is expected to double in the next 4-5 years.

Dr. Harald Profijt Corporate R&D, ASM International, Netherlands (now at ASML) presenting "ALD technology for the continuation of Moore’s law" at ALD for Industry 2017. (Photo Dr. M. Knaut)

In a European context ALD was invented independently twice in Europe (Russia & Finland) and since the last 15 years Germany has grown to become one of the strongest European markets for ALD in R&D, chemicals, equipment and end users. Here, Dresden and Saxony is a unique ALD hotspot due to a strong semiconductor and equipment industry as well as a high concentration of Fraunhofer, Leibnitz, Helmholtz, Max Planck Institutes and the Technical University of Dresden.


Dr. Jacques Kools, Founder of Encapsulix S.A. explaining the secrets behind warp speed ALD  (Photo Dr. M. Knaut)

The Event will focus on the current markets for ALD, besides the leading edge semiconductor industry, applications in MEMS and Sensors, Display, Lightning, Barriers and Photovoltaics will be addressed.

Confirmed speakers from: Globalfoundries (B. Hintze), Imec (Dr. S. van Elshocht), ASM Microchemistry (T. Blomberg), Picosun Oy, Beneq Oy (M. Söderlund), MKS Instruments (U. Meisner), OSRAM Opto Semiconductors GmbH, RASIRC (J. Spiegelman), University of Helsinki (Prof. M. Ritala), Fraunhofer THM (Prof. J. Heitmann)

Confirmed Tutorials: Fraunhofer IKTS (Dr. J. Sundqvist), Fraunhofer ENAS (Dr. J. Schuster), TU Dresden (Dr. M. Knaut), Fraunhofer IPMS (Dr. W. Weinreich), University of Linköping (Prof. H. Pedersen), Tyndall National Lab
 
Please visit the event web for the latest information: LINK 
 
Here is the event page from 2017: LINK
 
The event is open for sponsoring and exhibition (contact: jonas.sundqvist@baldengineering.com) 




Friday, December 15, 2017

Amtech Announces Follow-On Order for Next Generation Solar ALD for PERC Cell Line

TEMPE, Ariz., Dec. 14, 2017 /PRNewswire/ -- Amtech Systems, Inc. (NASDAQ: ASYS), a global supplier of production equipment and related supplies for the solar, semiconductor, and LED markets, today announced its solar subsidiary, SoLayTec B.V., has received a follow-on order for three next generation solar Atomic Layer Deposition (ALD) systems. The order is expected to ship and be installed in this fiscal year. As a leading ALD supplier in the market, SoLayTec has booked a total of 25 ALD system orders since its inception, of which 15 will be used in mass production.

Depending on the capacity levels that are needed, SoLayTec offers three types of InPassion ALD. The main difference is the number of deposition units modules added in such a system. The basic three products offered are 4, 6 or 8 deposition units, which result in 2,400 wph, 3,600 wph or 4,500 wph respectively. (www.solaytec.com)
 
Fokko Pentinga, CEO and President of Amtech, commented, "This follow-on order brings the total ALD tools ordered by this specific customer to seven. Four systems have been put in production of PERC solar cells in the second half of fiscal 2017. The orders SoLayTec has received from this particular customer represent a total of 1GW of PERC production capacity. This follow-on order validates our customer's confidence in the performance capabilities of our spatial ALD system in high-volume production of PERC solar cells. There is a high level of enthusiasm in the PV marketplace for PERC solutions and this manufacturing platform supports our customers' goals to improve the total cost of ownership by increasing cell efficiency."

Thursday, December 14, 2017

Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites

Phys.org reports: A team of scientists from the U.S. Department of Energy's Brookhaven National Laboratory and the University of Connecticut have developed a customizable nanomaterial that combines metallic strength with a foam-like ability to compress and spring back.
 
This scanning electron micrograph (SEM) image shows the nanomechanical testing tip passing over the arrays of custom-made nanopillars as it applies pressure to test elasticity and energy storage potential. The inset shows the structure of an individual hybrid nanopillar. Credit: Brookhaven National Laboratory

Read more at: https://phys.org/news/2017-12-scientists-nanoscale-pillars-memory-foam.html#jCp
This scanning electron micrograph (SEM) image shows the nanomechanical testing tip passing over the arrays of custom-made nanopillars as it applies pressure to test elasticity and energy storage potential. The inset shows the structure of an individual hybrid nanopillar. Credit: Brookhaven National Laboratory

Read more at: https://phys.org/news/2017-12-scientists-nanoscale-pillars-memory-foam.html#jCp

This scanning electron micrograph (SEM) image shows the nanomechanical testing tip passing over the arrays of custom-made nanopillars as it applies pressure to test elasticity and energy storage potential. The inset shows the structure of an individual hybrid nanopillar. Credit: Brookhaven National Laboratory

According to the supplemantary information The patterned SU-8 nanopillars were subjected to the AlOx infiltration synthesis at 85 °C using a commercial ALD system (Cambridge Nanotech Savannah S100). TMA (Sigma-Aldrich) was infiltrated into the polymer template for 5 min (vapor pressure <100 Torr), followed by N2 purging of the ALD chamber for 5 min (100 sccm). Then, water vapor was infiltrated into the polymer next for 5 min (pressure < 10 Torr), followed by N2 purging for 5 min, completing one synthesis cycle. A total of up to 16 cycles were applied.

This diagram shows the breakthrough synthesis process developed for these hybrid nanomaterials. First, electron-beam lithography carves the isolated nanopillars, then an aluminum vapor (TMA) infiltrates the pores in the structures, and finally exposure to water creates the final aluminum-oxide infused material. Credit: Brookhaven National Laboratory.

Please finde the abstract from Nanoletters below.
 
Read more at: LINK

Ultrahigh Elastic Strain Energy Storage in Metal-Oxide-Infiltrated Patterned Hybrid Polymer Nanocomposites

Nano Lett., 2017, 17 (12), pp 7416–7423
DOI: 10.1021/acs.nanolett.7b03238

Modulus of resilience, the measure of a material’s ability to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurements reveal a metal-like high yield strength (∼500 MPa) with an unusually low, foam-like Young’s modulus (∼7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ∼24 MJ/m3 as well as exceptional modulus of resilience per density of ∼13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.