"We see the investment in the ALD technology as a key step forward. ALD is everyday technology in silicon-based IC and memory components and there are real benefits also for the compound semiconductor devices. We want to be the forerunner in our specific application fields, so including ALD in our process portfolio is one important step in staying ahead of the competition." - Dr. Klaus Zieger, Manager Process & Tools, UMS
Wednesday, November 6, 2024
Applied Materials Delivers Advanced ALD 200 mm Batch Technology to United Monolithic Semiconductors (UMS) for RF and Power Device Manufacturing
Sunday, June 16, 2024
Boosting the Future: Increased ALD Use Paves the Way for Advanced GAAFET Technology
The Biden administration is considering a complete ban on the export of chips utilizing Gate All-Around Field Effect Transistor (GAAFET) technology to China, Bloomberg reports (LINK). The rationale behind this potential ban is the concern that such advanced transistors could be leveraged for military applications and artificial intelligence (AI) advancements by China. This move follows previous restrictions from 2022, when the U.S. barred its Electronic Design and Automation (EDA) companies from selling tools necessary for GAAFET development to China. In addition, advanced chip exports from companies like Nvidia were restricted, with these measures being progressively tightened and expanded over time.
Atomic Layer Deposition (ALD) is celebrating its 50th anniversary in 2024. The anniversary marks 50 years since Dr. Tuomo Suntola and his colleagues filed the first patent for Atomic Layer Epitaxy in 1974, which laid the foundation for ALD technology. This milestone will be celebrated at various events, including the ALD 2024 conference, where Dr. Suntola is expected to deliver the opening remarks .
The production of GAAFETs requires a significant increase in the use of ALD technology - maybe up to 40% more according to ASM. ALD is essential for creating the ultra-thin, uniform films needed for GAAFET structures, ensuring high-quality, defect-free layers that are critical for advanced transistor performance. This technology enables precise control over the deposition process, crucial for developing high-k dielectrics and other materials that enhance GAAFET performance and efficiency. As the semiconductor industry now transitions from FinFET to GAAFET technology, leveraging ALD's capabilities is vital for maintaining and advancing Moore's Law, enabling more powerful and energy-efficient chips using existing manufacturing infrastructure
Applied Materials has outlined next-generation tools essential for producing 3nm and GAA transistors, such as those in Samsung's upcoming 3GAE and 3GAP technologies. These advanced tools address the complexities of GAA transistor manufacturing, including precise lithography, epitaxy, and selective materials removal. Applied's Producer Selectra Selective Etch IMS tool is pivotal in defining channel width without damaging surrounding materials, while the Centura Prime Epi tool ensures clean deposition of Si and SiGe nanosheets. Additionally, their Integrated Materials Solution (IMS) systems integrate atomic layer deposition (ALD), thermal steps, and plasma treatments to optimize the gate oxide stack, enhancing performance and reducing gate leakage. These innovations are crucial as they enable higher performance, lower power consumption, and greater transistor density, aligning with the industry's move from FinFET to GAA technology.
Today GAA transistors are currently in mass production only by Samsung, which offered the technology to customers with its 3-nanometer process in 2022. Intel is set to follow, producing GAAFET on its 2-nanometer process expected to be available in its products later this year. TSMC, the market leader, plans to introduce GAAFET with its own 2 nm process in 2025. The GAAFET technology itself is not inherently suited for AI or military applications but represents an evolution in transistor design, enabling denser packing of transistors as lithography equipment and manufacturing processes advance. This technology shift, akin to transitioning to a new node, typically results in either reduced power consumption or improved performance by 15-25%.
The improvements facilitated by GAAFET could significantly enhance the capabilities available to China. SMIC, China's largest contract manufacturer, currently produces chips on a 7 nm process and is believed to be capable of reaching at least 5 nanometers with existing tools. The combination of this process with GAAFET could theoretically prevent China from falling too far behind Western advancements. However, China has been effectively shut out from developing GAAFET using tools from leading EDA companies, all of which are American. Additionally, the Dutch company ASML, dominant in the lithography equipment market, has not sold its EUV (Extreme Ultraviolet) machines to China and faced further restrictions in 2023 on selling its advanced DUV (Deep Ultraviolet) equipment. In April 2024, ASML took another step in the tech war against China by announcing that it would no longer service existing equipment in China, potentially crippling the country's semiconductor manufacturing capabilities. The specific details of the new export bans are still unclear, but Reuters notes that initial proposals have faced criticism from the U.S. semiconductor industry for being overly broad and extensive.
Source: USA överväger ytterligare GAAFET-sanktioner mot Kina – Semi14, www.ASM.com, Applied Materials Outlines Next-Gen Tools for 3nm and GAA Transistor Era (anandtech.com), Atomic layer deposition, next-gen transistors, and ASM (techfund.one)
Saturday, April 13, 2024
Applied Materials Pioneer® CVD film for EUV Sculpta and DRAM Sym3 Etch applications
Tuesday, February 27, 2024
Applied Materials Unveils Cutting-Edge Patterning Technologies for Next-Gen Semiconductor Device Manufacturing
Applied Materials is leading the charge into the angstrom era of chipmaking, unveiling a suite of innovative solutions at the SPIE Advanced Lithography + Patterning conference. The company's focus is on overcoming the challenges posed by extreme ultraviolet (EUV) and high-NA EUV lithography, crucial for the production of chips at 2nm process nodes and below. Their approach integrates new materials engineering, metrology techniques, and pattern-shaping technology to enhance chip performance and yield.
To help overcome patterning challenges for leading-edge chips, Applied Materials offers a portfolio of technologies designed to complement the latest advances in lithography. The company’s newest innovations include the Producer® XP Pioneer® CVD patterning film, the Sym3® Y Magnum™ etch system, the Centura® Sculpta® pattern-shaping system and Aselta contour technology for design-based metrology.
Central to Applied Materials' advancements is the Sculpta® pattern-shaping technology, first introduced at the previous year's conference. Sculpta has seen growing adoption among top logic chipmakers for its ability to refine EUV patterning, notably reducing double patterning steps and mitigating defects such as bridge defects. This technology not only lowers patterning costs but also improves chip yields, showcasing its increasing importance in the semiconductor manufacturing landscape.
In response to the issue of EUV line edge roughness, Applied Materials has launched the Sym3® Y Magnum™ etch system. This innovative system employs a combination of deposition and etch processes within a single chamber to smooth out rough edges before etching, thereby enhancing yield and chip performance.
Additionally, the company introduced the Producer® XP Pioneer® CVD patterning film, designed for high-fidelity pattern transfer with enhanced resistance to etch chemistries. This film is especially significant for advanced process nodes, offering improved sidewall feature uniformity and co-optimization with both Sculpta and the Sym3 Y Magnum system for superior patterning capabilities.
To address the critical issue of feature alignment across chip layers, Applied Materials has acquired Aselta Nanographics, integrating its design-based metrology with Applied's leading eBeam systems. This integration enables a comprehensive metrology solution that significantly enhances feature placement accuracy, crucial for optimizing chip performance and yield.
Applied Materials' expansion of its patterning solutions portfolio underscores its commitment to advancing semiconductor technology. By addressing key challenges in EUV lithography and introducing groundbreaking technologies, the company is setting new standards for the industry, driving forward the capabilities of angstrom era chipmaking.
Saturday, January 20, 2024
Unveiling the Future of Material Science: Key Takeaways from the MLD and ALD Webinar
In the dynamic world of material science, the recent Applied Materials Picosun webinar held on January 16, 2024 centered on Atomic Layer Deposition (ALD) and Molecular Layer Deposition (MLD), offered a deep dive into these groundbreaking technologies and their applications in crafting advanced functional properties.
The webinar was given by Topias Jussila, Doctoral Researcher, Aalto University, Finland. Let's explore how ALD and MLD are shaping the future of materials at the nanoscale.
The Emergence of MLD
Molecular Layer Deposition, though a relative newcomer compared to ALD, has quickly garnered attention for its unique capabilities. MLD, which operates on the principle of sequential molecular layering, offers a versatile platform for creating hybrid materials with tailored properties. The webinar expertly delineated the different types of MLD, such as metal-aliphatics, metal-aromatics, and inorganic-organic multilayers, each presenting its distinct advantages in material fabrication.
Synergy of ALD and MLD
The fusion of ALD with MLD emerged as a focal point of discussion. This combination enhances the material properties, allowing for precise control at the nanoscale. The synergy of ALD and MLD opens doors to innovative applications, particularly in microelectronics and nanotechnology, by creating materials with unprecedented electrical, optical, and mechanical properties.
Applications That Reshape Industries
The practical applications of MLD and ALD-MLD are vast and varied. Key areas include:
Flexible Barrier Layers: MLD is particularly effective in creating ultra-thin, flexible barrier layers that are impermeable to gases and moisture. This is crucial for applications like organic light-emitting diode (OLED) displays and flexible electronics, where moisture and oxygen can degrade the performance of the devices.
Encapsulation: MLD provides an excellent method for encapsulating sensitive components, protecting them from environmental factors without compromising their functionality.
Photocatalysis: MLD materials are used in photocatalysis applications, which are important in environmental remediation and energy conversion technologies.
Electronics and Semiconductors: The combination of MLD with ALD is particularly advantageous in the electronics and semiconductor industries. It enables the precise deposition of thin films with tailored electrical and optical properties, crucial for advanced microelectronics and photonics.
Biomedical Applications: The versatility of MLD and ALD-MLD coatings also finds applications in the biomedical field, such as in drug delivery systems and bioimaging, where biocompatibility and controlled interactions with biological environments are essential.
Industrialization and Future Outlook
As for the industrialization of MLD, it is a relatively newer field compared to ALD. While ALD has been widely industrialized, particularly in the semiconductor industry, MLD is still primarily in the research and development stage, with growing interest in transitioning to industrial applications. The unique capabilities of MLD in creating organic-inorganic hybrid materials are driving research and potential industrial applications, but widespread industrial adoption might still be in progress.
The ALD and MLD webinar served as a beacon of knowledge, shedding light on the latest advancements and future prospects of these technologies. As we step into an era where material science plays a critical role in technological advancements, the insights from this webinar not only educate but also inspire further exploration and innovation in the field. The future of material science, undoubtedly, holds exciting possibilities, with ALD and MLD at its forefront.
Wednesday, December 13, 2023
Breakthrough in Digital Lithography by Applied Materials and Ushio Boosts AI Computing Power
Ushio, Inc. have announced a significant strategic partnership, marking a new era in digital lithography technology. This collaboration aims to spearhead the transition to heterogeneous chiplet integration on large substrates like glass, a move crucial for advancing Artificial Intelligence (AI) computing capabilities.
This new digital lithography system, pioneered by Applied Materials and Ushio, is tailor-made for patterning advanced substrates vital in the AI era. With the growing demand for AI workloads, there's an increased need for larger, more functional chips. Traditional methods can't keep up with AI's performance requirements, hence the shift to heterogeneous integration (HI) techniques. These involve combining multiple chiplets in an advanced package, offering performance and bandwidth comparable to monolithic chips.
The partnership leverages Applied Materials' expertise in large substrate processing and Ushio's experience in lithography for packaging. Dr. Sundar Ramamurthy from Applied Materials highlights the new Digital Lithography Technology (DLT) as a game-changer for customers' advanced substrate roadmaps. William F. Mackenzie of Ushio emphasizes their long-standing experience in lithography systems and their commitment to this new venture.
The DLT system stands out as the only technology capable of achieving the necessary resolution for advanced substrate applications while maintaining high-volume production throughput. It can pattern line widths less than 2-microns, allowing unprecedented area density for chiplet architectures on various substrates, including glass.
Applied Materials is responsible for R&D and creating a scalable roadmap for the DLT system, aiming to push innovation in advanced packaging to 1-micron line widths and beyond. Ushio will use its established manufacturing and customer infrastructure to facilitate the technology's adoption.
While this announcement is forward-looking and subject to the usual risks and uncertainties of the tech industry, it heralds a new chapter in computing technology, potentially transforming the landscape of high-performance computing in the AI era.
- Applied Materials, Inc. is a leader in materials engineering solutions, essential in producing new chips and advanced displays worldwide.
- Ushio, Inc., established in 1964, specializes in manufacturing and selling various light sources and optical equipment, with a significant presence in industrial processes and visual imaging.
For more information or media inquiries, contact Ricky Gradwohl for Applied Materials and the Corporate Communication Department for Ushio.
Photos and more details are available on here Breakthrough Digital Lithography Technology From Applied Materials and Ushio to Enable More Powerful Computing Systems for the AI Era | Applied Materials.
Thursday, December 7, 2023
Applied Materials and CEA-Leti Forge New Joint Lab to Spearhead Specialty Chip Market Innovations
Applied Materials and CEA-Leti have announced a significant expansion of their collaboration, focusing on innovative materials engineering solutions tailored for specialty semiconductor markets. The joint lab, situated at CEA-Leti, is dedicated to propelling semiconductor device development, particularly for Applied Materials' ICAPS (IoT, Communications, Automotive, Power, and Sensors) customers.
This partnership underscores a growing demand in the ICAPS sector, fueled by advancements in industrial automation, IoT, electric vehicles, and green energy initiatives. The joint lab will tackle various materials engineering challenges to facilitate the next generation of ICAPS device innovations. Equipped with Applied Materials' advanced 200mm and 300mm wafer processing systems, the lab leverages CEA-Leti's expertise in new materials evaluation and device validation.
The joint lab features several of Applied Materials’ 200mm and 300mm wafer processing systems, such as this Endura® system, and leverages CEA-Leti’s world-class capabilities for evaluating performance of new materials and device validation.
The collaboration aims to enhance power efficiency, performance, and cost-effectiveness, while also reducing time to market. Aninda Moitra, corporate vice president and general manager of Applied Materials' ICAPS business, emphasizes this initiative as an extension of a decade-long successful partnership, geared towards accelerating innovation in specialty semiconductor technologies.
Sébastian Dauvé, CEO of CEA-Leti, reflects on the decade of collaborative projects leading up to this new joint lab. These projects spanned advanced metrology, memory materials, optical devices, bonding techniques, and chemical-mechanical planarization. The results have consistently delivered high value, setting a solid foundation for this expanded engagement.
The lab not only aims to develop unique technological solutions for Applied Materials' customers but also supports CEA-Leti's internal R&D programs, overcoming current technical challenges. This initiative marks a significant step in the collaboration, promising to bring breakthroughs in specialty semiconductor technology to global markets.
Friday, September 22, 2023
ASML's 2023 Outlook: Surging Ahead in Semiconductor Equipment Despite Challenges and Export Controls
In 2023, ASML, the leading semiconductor lithography equipment supplier, is set to achieve remarkable success, outpacing its rivals and emerging as the number 1 provider of Wafer Fabrication Equipment. Boasting an impressive 30% revenue growth forecast for the year, ASML is thriving amidst an industry landscape marked by its consistent performance. With a substantial backlog of cutting-edge Deep Ultraviolet (DUV) and Extreme Ultraviolet (EUV) systems and surging demand from China, ASML's growth continues despite hurdles like supply chain disruptions and regulatory changes, ASML remains a beacon of innovation and resilience in the semiconductor sector.
By Abhishek Kumar Thakur and Jonas Sundqvist
ASML, a leading supplier of semiconductor equipment, is poised for a significant year in 2023, projected to surpass Applied Materials (AMAT) as the top provider of Wafer Fabrication Equipment. This achievement is attributed to ASML's robust revenue growth, expected to reach a remarkable 30% increase in 2023, while Applied Materials faces a decline of 20% according to Seeking Alpha*. ASML's success can be attributed to a substantial backlog of Deep Ultraviolet (DUV) and Extreme Ultraviolet (EUV) systems, driven by heightened demand in China.
* Fact check: Due to strong DUV revenue and despite the increased uncertainties, ASML expects strong growth for 2023 with a net sales increase towards 30% and a slight improvement in gross margin, relative to 2022. ASML Holding revenue for the twelve months ending June 30, 2023 was $27.293B, a 25.97% increase year-over-year. AMAT revenue is estimated to increase by 2.6% to 26.33 B. Meaning ASML would pass bu end of 2023.
https://finance.yahoo.com/quote/AMAT/analysis/
Despite facing challenges like supply chain disruptions and a factory fire, ASML has consistently ranked among the top three semiconductor equipment suppliers since 2017. Their backlog of EUV systems, combined with growing acceptance of DUV tools, contributes to their strong performance.
However, potential headwinds include supply chain concerns, past issues like the Berlin factory fire, and looming sanctions affecting exports to China. While ASML has addressed some challenges, the possibility of US sanctions in 2024 poses a threat to its growth.
Furthermore, ASML now faces new export controls imposed by the Netherlands, impacting shipments to China. While the company downplays these controls' immediate financial impact, they are expected to affect specific DUV systems, adding to global efforts to limit China's semiconductor advancements.
In this volatile landscape, ASML's ability to adapt to evolving regulations and maintain its technological leadership will be crucial. The impact of these restrictions, especially on shipments to China, could influence the company's growth trajectory in the semiconductor industry. Despite these challenges, ASML remains a prominent player with significant potential in the semiconductor equipment market.
ASML is set to deliver the industry's first High-NA extreme ultraviolet (EUV) lithography scanner by the end of 2023, marking a significant development for advanced chip manufacturing. The Twinscan EXE:5000 pilot scanner with a 0.55 numerical aperture (NA) will enable chipmakers to explore High-NA EUV technology. This innovation is crucial for achieving an 8nm resolution, suitable for manufacturing technologies beyond 5nm nodes. Intel is expected to be the first customer, but integration and adoption details are still uncertain. This advancement requires substantial investments, with reports suggesting costs of $300-400 million per unit.
To add some colour, initially, Intel had plans to employ ASML's High-NA tools for its 18A (1.8 nm) production node, scheduled for high-volume manufacturing in 2025, aligning with ASML's Twinscan EXE:5200 delivery. However, Intel accelerated its 18A production, moving it to the latter part of 2024. This change in strategy involved the use of ASML's Twinscan NXE:3600D/3800E with two exposures and Applied Material's Endura Sculpta pattern-shaping system. The objective was to reduce reliance on EUV double patterning techniques. Applied Materials' Centura Sculpta is a pattern-shaping machine equipped with a unique algorithm that can manipulate patterns produced by an EUV scanner. It has the capability to stretch these patterns in a user-defined direction along the X-axis. This process effectively reduces the space between features and enhances pattern density. This means that moving ahead ASML and Applied Materials are entering an interesting competitive space previously not encountered.
ASMLs Products
As an background, ASML specializes in the production of cutting-edge lithography systems crucial for semiconductor manufacturing. Their product portfolio includes the following key offerings:
Extreme Ultraviolet (EUV) Lithography Machines: ASML's EUV lithography machines are at the forefront of semiconductor manufacturing technology. These machines use extremely short wavelengths of light to create intricate patterns on silicon wafers, enabling the production of advanced and smaller semiconductor chips. EUV technology is essential for next-generation processors and memory chips.
Deep Ultraviolet (DUV) Lithography Machines: DUV lithography systems are another vital component of ASML's product lineup. They use longer wavelengths of light compared to EUV and are employed for a wide range of semiconductor applications, including memory and logic chip production. ASML's DUV systems are known for their precision and reliability.
TWINSCAN Series: Within the DUV lithography category, ASML offers the TWINSCAN series, which includes machines like the TWINSCAN NXT:2000i, NXT:2050i, and NXT:2100i. These systems are designed for immersion lithography, where the wafer and the lens are submerged in a liquid, enhancing precision and resolution.
EUV High Numerical Aperture (NA) Systems: ASML has been advancing its lithography machines by increasing the numerical aperture (NA), a key parameter that affects resolution. High-NA systems are capable of printing even smaller features on semiconductor wafers, enabling the production of highly advanced chips.
ASML's lithography machines are considered critical infrastructure for semiconductor manufacturing, and the company's technological leadership in this area has positioned it as a dominant player in the industry. The company's ability to innovate and adapt its lithography systems to meet the ever-increasing demands of semiconductor manufacturers has been a key factor in its success and growth prospects. However, the recent export controls and geopolitical pressures, particularly concerning shipments to China, introduce additional challenges and uncertainties for ASML and its specialized products.
Sources:
ASML Hit With New Dutch Limits on Chip Gear Exports to China - Bloomberg
ASML To Top WFE Semiconductor Equipment In 2023, Topping Applied Materials | Seeking Alpha
ASML to ship first pilot tool in its next product line in 2023, CEO says | Reuters
ASML to Deliver First High-NA EUV Tool This Year (anandtech.com)
EUV Alternative Speeds Up Chip Production - EE Times
Saturday, September 9, 2023
SkyWater Installs Advanced Atomic Layer Deposition System from Picosun
Tuesday, September 5, 2023
Revolutionizing Pharmaceutical Packaging and Labware: ALD Technology Enhances Material Properties
Tuesday, August 22, 2023
Applied Materials Surges on Impressive Q3 Earnings and Bullish Guidance
Applied Materials Inc. (NASDAQ: AMAT) witnessed a robust surge of nearly 4% in after-hours trading following the release of its third-quarter financial results that significantly outperformed expectations. The semiconductor capital equipment manufacturer reported adjusted earnings of $1.90 per share on $6.43 billion in revenue for the quarter ending July 30.
Notably, the company's strategic focus on foundry and logic revenue paid off, accounting for 79% of quarterly sales compared to 66% in the prior year's quarter. Additionally, Applied Materials generated a substantial $2.58 billion in cash from operations during this period. The company's bullish performance extended to its outlook, with fourth-quarter net sales projected at approximately $6.51 billion, accompanied by adjusted earnings per share ranging from $1.82 to $2.18. These figures comfortably exceeded analyst estimates, highlighting Applied Materials' robust position in the semiconductor industry.
Applied Materials, Inc. (AMAT) Q3 2023 Earnings Call TranscriptSA TranscriptsThu, Aug. 17
Applied Materials, Inc. 2023 Q3 - Results - Earnings Call PresentationSA TranscriptsThu, Aug. 17
Friday, March 3, 2023
Applied Materials’ Pattern-Shaping Technology - Centura Sculpta
- Directed ribbon-beam capability for novel etching applications
Friday, December 23, 2022
Picosun initiates R&D program in Finland for sustainable semiconductor manufacturing
Photo, Björn Engström, Oravais, Ostrobothnia, Finland.
Friday, November 25, 2022
Applied Materials Delivers Strong FY 2022 Numbers including Picosun ALD
LINK: https://ir.appliedmaterials.com/
The company’s uniquely enabling technology and growing installed base will be its key growth drivers as chipmakers accelerate ramping up of new process nodes in R&D for high-volume manufacturing.
Key developments in FY 2022
- Applied Materials acquired Picosun, a Finland-based innovator in atomic layer deposition (ALD) technology. This acquisition broadens Applied’s product portfolio and puts it in a great position to capture a large portion of the specialty semiconductor market in the coming years.
- Collaboration with the Institute of Microelectronics (IME), a research institute under Singapore’s Agency for Science, Technology and Research (A*STAR). IME’s strategic R&D capabilities complement well Applied’s expertise in advanced packaging solutions and will accelerate material, equipment and process technology solutions for hybrid bonding and other emerging, 3D chip integration technologies.
- Introduced new Ioniq™ PVD system to solve wiring resistance challenges of 2D scaling. This new integrated solution offers a significant reduction in electrical resistance, which has become a critical bottleneck to further improvements in chip performance and power.
- Semiconductor Systems revenue increased 15% YoY in FY 2022 to $18,797 million on account of strong orders as customers continued to invest in next-generation technology.
- Applied Materials’ service revenue increased 11% YoY in FY 2022 to $5,543 million, accounting for 21% of the annual net revenue.
- Display and Adjacent Markets revenue decreased 19% YoY in FY 2022 to $ 1,331 million.
- Non-GAAP gross margin was at 46.6% in FY 2022.
- Non-GAAP operating profit grew by over 7% to $7.86 billion.
- Non-GAAP EPS increased nearly 13% to $7.70.
- Total ending backlog increased 62% to $19 billion with Semiconductor Systems backlog increasing 90% to nearly $12.7 billion and services backlog increasing 30% to over $5.6 billion.
- The company generated about $5.4 billion in operating cash flow and over $4.6 billion in free cash flow.
- The company’s installed base grew 8% YoY in FY 2022.
- The number of tools under comprehensive, long-term service contracts grew 16% YoY with the over 90% renewal rate for these agreements demonstrating the value customers see in subscription services.
- New export regulations for US semiconductor technology sold in China reduced Semiconductor Systems and AGS fourth quarter revenue by approximately $280 million.
Thursday, June 16, 2022
Applied Materials Broadens its Technology Portfolio for Specialty Chips with Acquisition of Picosun
Saturday, June 12, 2021
Applied Materials to present New Innovations Needed to Continue Scaling Advanced Logic (June 16)
Primary modules of a FinFET are channel and shallow trench isolation (1), high-k metal gate (2) and transistor source/drain resistance (3). (Credit: Applied Materials)
Friday, May 7, 2021
Applied Materials MEMORY MASTER CLASS 2021 - slide deck
I missed this opportunity, however, I am grateful for Lita Shon-Roy just sending me the link to the slide deck - Tack så mycket.
Slide deck for the Memory Class LINK
Next class up is Logic June 16, 2021 followed by more interesting topics in 2nd half 2021:
- Specialty semiconductors
- Heterogeneous design and advanced packaging
- Inspection and process control
You are welcome to contact us at TECHCET (jsundqvist@techcet.com) to dig further into the future surge of materials to realize the data-driven economy:
- ALD/CVD precursors
- Metals/PVD Targets
- Photoresist
- Wet chemicals
- CMP pads & slurries
- Bulk, Rare and Speciality gases
- Wafers
Applied Materials Introduces Materials Engineering Solutions for DRAM Scaling
- New Draco™ hard mask material co-optimized with Sym3® Y etcher to accelerate DRAM capacitor scaling
- DRAM makers adopting Black Diamond®, the low-k dielectric material pioneered by Applied Materials to overcome interconnect scaling challenges in logic
- High-k metal gate transistors now being introduced in advanced DRAM designs to boost performance and reduce power while shrinking the periphery logic to improve area and cost