Showing posts with label JSR. Show all posts
Showing posts with label JSR. Show all posts

Tuesday, August 13, 2024

South Korea's Exports Surge in August Driven by Semiconductors; SK Hynix Leads 1c DRAM Production, Samsung Confirms Investment for 2025 Launch; Both Giants to Adopt Next-Gen Photoresist Technologies

In the first 10 days of August 2024, South Korea's exports increased by 16.7% year-on-year, reaching $15.5 billion, driven primarily by a significant 42.1% surge in semiconductor exports. Other sectors like petroleum products and automobiles also saw growth, with automobile exports rising sharply by 63.9%. However, machinery product exports declined by 10.6%. Imports grew by 13.4% to $18.4 billion, resulting in a trade deficit of $2.9 billion. Notably, exports to major trading partners China and the United States increased by 10.7% and 27.7%, respectively. This continues a trend of export growth, marking the tenth consecutive month of gains as of July.



SK hynix has announced it will begin mass production of its 6th generation (1c) 10nm class DRAM in the third quarter of 2024, ahead of Samsung Electronics, which plans to start production by the end of the year. SK hynix has already established an internal road map to achieve customer certification and start production, potentially positioning itself to capture significant demand from major tech companies like Amazon and Microsoft once Intel certifies its DRAM for server use. The 6th generation DRAM, utilizing advanced Extreme Ultraviolet (EUV) lithography, promises higher chip yields and improved power efficiency compared to previous generations.

Samsung has confirmed its investment in the Pyeongtaek P4 plant for the production of 6th-generation 1c DRAM, with plans to begin mass production in June 2025. This next-generation DRAM, which uses 10nm-class technology, is still not commercialized globally, but Samsung and SK hynix are preparing for its mass production. Despite initial delays due to a downturn in the semiconductor market, Samsung is now expanding its P4 facility, initially installing NAND flash equipment and confirming plans for 1c DRAM production. The company also anticipates launching HBM4 using 1c DRAM by the second half of 2025, aligning with forecasts of significant growth in the memory industry's revenues.

Both Samsung and K Hynix plans to adopt Inpria's metal oxide resist (MOR) technology in the production of 1c DRAM, utilizing MOR to draw the finest lines on one of the five to six  EUV layers in the 1c DRAM. This adoption aims to enhance performance and reduce costs in future DRAMs. MOR is seen as a next-generation alternative to the chemically amplified resist (CAR) currently used in advanced chip lithography, addressing CAR's limitations in resolution, etching resistance, and line edge roughness. 

In 2021, JSR Corporation announced its acquisition of Inpria Corporation, the leading innovator in metal oxide photoresist technology for EUV lithography, solidifying its focus on advancing semiconductor materials.

Samsung is considering multiple suppliers for its EUV MOR photoresist needs beyond Inpria, including companies like Dupont, Dongjin Semichem, and Samsung SDI. These alternatives are currently being tested as the company explores the best options for its 1c DRAM production. 

Lam Research refers to its inorganic photoresist technology as "dry resist," which reportedly is expected to be supplied for Gen 7 10nm (1d) DRAM production, anticipated to launch next year. This dry resist is deposited by ALD and represents a further evolution in PR technology, potentially offering enhanced performance for the next generation of DRAM manufacturing.

Exports increase 16.7 percent in first 10 days of August - The Korea Times

SK hynix Leads with ‘6th Generation 10 nm’ DRAM Production Ahead of Samsung - Businesskorea

[News] Samsung Reportedly Confirms Investment in Pyeongtaek P4 Plant for 6th-Generation 1c DRAM | TrendForce Insights

SK Hynix to adopt Inpria MOR in 1c DRAM - THE ELEC, Korea Electronics Industry Media (thelec.net)

Samsung said to consider Inpria's metal oxide resist for 1c DRAM process (digitimes.com)

Samsung considering applying metal oxide resist in next DRAM - THE ELEC, Korea Electronics Industry Media (thelec.net)

Sunday, August 11, 2024

JSR Corporation Completes Strategic Acquisition of Yamanaka Hutech Corporation to Bolster Semiconductor Materials Portfolio with CVD and ALD Precursors

On August 2, 2024, JSR Corporation announced the successful acquisition of Yamanaka Hutech Corporation, a renowned supplier of high-purity chemicals for the semiconductor industry. The acquisition, finalized on August 1, 2024, positions YHC as a wholly-owned subsidiary of JSR. This strategic move allows JSR to enhance its product offerings, particularly in semiconductor film-forming technologies, and aligns with its growth strategy aimed at strengthening its presence in the advanced semiconductor materials sector. JSR is committed to driving innovation, optimizing supply chains, and maintaining strong customer relationships as the semiconductor industry undergoes significant changes.



JSR Corporation's acquisition of Yamanaka Hutech Corporation (YHC) brings YHC's high-purity CVD and ALD precursors into JSR's portfolio, enhancing its capabilities in semiconductor materials. YHC, with over 60 years of expertise in advanced molecular design and synthesis technology, has a strong track record in supplying high-quality CVD/ALD precursors, particularly in competitive ALD material areas. This acquisition allows JSR to diversify beyond its traditional focus on photoresists and strengthens its position as a global leader in advanced semiconductor materials, poised to drive innovation in both miniaturization and device structure advancements.

Sources:

JSR Completes Acquisition of All Shares in Yamanaka Hutech ~ Accelerating Semiconductor Materials Industry Reorganization~ | 2024 | News | JSR Corporation

JSR to make Yamanaka Hutech, a high-purity chemical for semiconductors, a wholly owned subsidiary ~Expanding the product portfolio in the field of cutting-edge semiconductor deposition~ | 2024 | News | JSR Corporation