"Founded in 2021 and owned by the Shenzhen city government, SiCarrier is largely seen as a Huawei supplier. But it wants to become the leading domestic provider of chipmaking equipment in China, surpassing Naura and Advanced Micro-Fabrication Equipment China (AMEC), according to four people with knowledge of its goals."
A Reuters review of 92 patents filed by Shenzhen SiCarrier Industry Machines and its parent Shenzhen SiCarrier Technologies between October 2022 and March 2025 reveals the company’s ambitious plan to establish itself as a comprehensive supplier of semiconductor manufacturing equipment. Unlike domestic peers such as Naura and AMEC, which have taken more focused approaches, SiCarrier is pursuing an expansive product roadmap that spans the entire chip production chain—from wafer metrology and defect inspection to etching and atomic layer deposition (ALD) systems. These filings, verified through Anaqua’s AcclaimIP database, illustrate SiCarrier’s intention to compete head-on with established global players such as KLA, Lam Research, and Tokyo Electron, particularly in process-critical segments like thin-film deposition and etch uniformity control. Notably, SiCarrier is investing in AI-powered wafer defect recognition, a frontier area aimed at enhancing production yields, especially important in advanced nodes where precision is paramount. Industry observers cited by Reuters suggest metrology and inspection tools offer SiCarrier the most immediate opportunity, given the absence of a dominant Chinese competitor in that space. The patent portfolio also reveals efforts to close the technological gap in lithography by focusing on components for deep ultraviolet (DUV) systems and multi-patterning techniques. These are presented as domestic alternatives to extreme ultraviolet (EUV) lithography, which remains out of reach due to US export controls. However, experts like Dan Hutcheson of TechInsights caution that the multi-patterning approach—though pioneered by Intel and used by TSMC at 7 nm—carries known drawbacks such as increased complexity and yield challenges, stemming from its reliance on sequential deposition and several etch processes.
No comments:
Post a Comment