Wednesday, March 24, 2021
Canon, SCREEN and Tokyo Electron to join Japan advanced chipmaking project for 2nm
Thursday, January 21, 2021
Master Thesis in Nanotechnology with Alixlabs in Sweden on Atomic Level Fragmentation
Tuesday, December 22, 2020
Nanoscale lithography of metal–organic frameworks (MOFs)
Tuesday, October 6, 2020
Imec demonstrates CNT pellicle utilization on EUV scanner
LEUVEN (Belgium, LINK) October 6, 2020 — Imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, announced today promising results in extreme ultraviolet (EUV) reticle protection. Multiple CNT-based pellicles were mounted on reticles and exposed in the NXE:3300 EUV scanner at imec, demonstrating the successful fabrication and scanner handling of full-field CNT-based pellicles. The tested pellicles had a single-pass EUV transmission up to 97%. The impact on imaging was found to be low and correctable based on critical dimension (CD), dose, and transmission measurements.
A pellicle is a membrane used to protect the photomask from contamination during high-volume semiconductor manufacturing. It is mounted a few millimeters above the surface of the photomask so that if particles land on the pellicle, they will be too far out of focus to print. Developing such an EUV pellicle is very challenging, since 13.5nm light is absorbed by most materials. In addition, stringent thermal, chemical, and mechanical requirements must be achieved. Such highly transparent pellicle is critical to enable high yield and throughput in advanced semiconductor manufacturing.
Imec has leveraged partners in the semiconductor industry, materials companies and fundamental research to develop an innovative EUV pellicle design with potential to survive scanner powers beyond 600 Watts
“Imec has leveraged partners in the semiconductor industry, materials companies and fundamental research to develop an innovative EUV pellicle design with potential to survive scanner powers beyond 600 Watts,” said Emily Gallagher, principal member of technical staff at imec. “We have seen tremendous progress in carbon nanotube membrane development in the past year and, based on strong collaborations with our partners, are confident it will result in a high-performance pellicle solution in the near future.”
CNTs are one-atom-thick carbon sheets rolled into tubes. The CNTs can be single-, double- or multi-walled and can vary in diameter and in length. These engineered CNTs can be arranged in different configurations to form membranes of different densities. Since 2015, imec has been working with selected CNT suppliers (Canatu Oy and Lintec of America, Inc., Nano-Science & Technology Center) to develop membranes that meet the EUV pellicle targets for properties like transmittance, thermal durability, permeability, and strength and to enable the imaging results reported today. Future work will focus on achieving acceptable lifetimes for high volume manufacturing of these pellicles in scanners.
Tuesday, October 15, 2019
Lund University Holding invests in newly started AlixLabs
LU Holding invests in newly started AlixLabs, which have developed a method to manufacture electronic circuits for the semiconductor industry in a very cost-effective way.
[Published on September 27, 2019: Original in Swedish: LINK]
Researchers from NanoLund have developed and patented the method and all three, Jonas Sundqvist, Dmitry Suyatin, and Sabbir Kahn, are part of the newly started company (AlixLabs AB), and Co-founder Stefan Svedberg joins as CEO. Svedberg was previously Director of Corporate Development at Ericsson.
Displaying the Edge Effect: This is a new method of nanostructure fabrication using the atomic layer etching process, which is inherently a damage-free etch process. The recently discovered etching process selectivity to inclined surfaces, can be used as a mask and in this way walls of tapered structures. The inclined surfaces can be readily fabricated by e.g. dry etching or epitaxial growth, and will provide masking during the atomic layer etching process. This process therefore provides access to fabrication of extremely small structures in a very precise and efficient way.
Electronic circuits are needed in all types of hardware, but the cost of producing them has increased as the electronics become smaller. With the AlixLab method, which is based on a recently identified physical phenomenon, the manufacturing process of the electronic circuits becomes both faster and significantly cheaper.
Alixlabs plans to implement an expanded proof of concept in 2020 as the basis for continued customer discussions.
Sunday, December 9, 2018
Argonne develops SIS lithography to maintain the technological progression and scaling of Moore’s Law
The materials synthesis method known as sequential infiltration synthesis, or SIS, has the potential to improve not only chip manufacturing but also things like hard drive storage, solar cell efficiency, anti-reflective surfaces on optics and water-repellant car windshields. Invented in 2010 during a lunchtime conversation between Argonne scientists Seth Darling and Jeffrey Elam and two of their postdoctoral researchers, use of the method has grown in recent years.
Top: Jeff Elam and Anil Mane, co-inventor on the SIS for lithography method and Principal Materials Science Engineer in Argonne’s Applied Materials Division. Bottom: Silicon wafers, ranging in size from 4” to 12” diameter, that have been treated using Argonne’s sequential infiltration synthesis method (Credit : Argonne National Laboratory).
The method was based on the group’s discussion of atomic layer deposition, or ALD, a thin film deposition technique that uses alternating chemical vapors to grow materials one atomic layer at a time. Darling, director of the Institute for Molecular Engineering at Argonne and the Advanced Materials for Energy-Water Systems Energy Frontier Research Center, recently used that technique to add a water-loving metal oxide coating to filters used in the oil and gas industry which prevents the filters from clogging.
“It worked beautifully on the first try.” — Seth Darling, director of Argonne’s Institute for Molecular Engineering and the Advanced Materials for Energy-Water Systems Energy Frontier Research Center
But as the group talked, they started speculating about taking ALD to a new level, said Darling.
“We said ‘Wouldn’t it be neat if we could grow one material inside another material like a polymer (a string of many combined molecules) instead of on top of it?’” Darling said. “We first thought ‘This isn’t going to work,’ but, surprisingly, it worked beautifully on the first try. Then we began imagining all of the different applications it could be used for.”
The research was funded by the DOE Office of Science, Basic Energy Sciences Program as well as the Argonne-Northwestern Solar Energy Research Center, a DOE Office of Science-funded Energy Frontier Research Center.
Anil Mane unloding wafers processed in a BENEQ TFS 500 ALD reactor at Argonne’s Applied Materials Division. (Credit : Argonne National Laboratory).
SIS is similar to ALD on a polymer surface, but in SIS the vapor is diffused into the polymer rather than on top of it, where it chemically binds with the polymer and eventually grows to create inorganic structures throughout the entire polymer bulk.
Using this technique, scientists can create robust coatings that can help the semiconductor manufacturing industry etch more intricate features on computer chips, allowing them to become even smaller or to add extra storage and other capabilities. They can also tailor the shape of various metals, oxides and other inorganic materials by applying them to a polymer with SIS and then removing the remains of the polymer.
“You can take a pattern in a polymer, expose it to vapors and transform it from an organic material to an inorganic material,” said Elam, director of Argonne’s ALD research program, referring to the way the method can use polymers and a vapor to basically mold a new material with specific properties. “It’s a way to use a polymer pattern, and convert that pattern into virtually any inorganic material.”
The technology’s potential spans beyond semiconductors. It could be used to advance products in different industries, and Argonne would be delighted to work with commercialization partners who can take the invention and incorporate it in existing products - or invent new applications to benefit U.S. economy, said Hemant Bhimnathwala, a business development executive at Argonne.
“You can use SIS to create a film, you can put it on a metal, you can create this on glass or put it on a glass windshield to make it water repelling to the point where you don’t need wipers,” Bhimnathwala said.
The way the scientists invented the technique — through that lunch meeting — was also a bit unusual. New discoveries often come about by accident, but not usually by spitballing ideas over lunch, Elam said.
“Occasionally, if you’re watching intently, you can see something else there and discover something new and unexpected,” Elam said. “That doesn’t happen very often, but when it does, it’s great.”
The technique also addresses a specific concern in the semiconductor manufacturing industry, pattern collapse, which means the collapse of tiny features used to create electrical components on a computer chip, rendering it useless.
When a pattern is etched on a silicon chip in the chip-making process, an etch-resistant surface is used as a protective coating to mask those regions you do not want to remove. But the etch-resistant coatings commonly used today wear away very quickly, which has prevented chip manufacturers from making components with deeply etched features, Darling said.
With SIS, inorganic vapor coatings can be engineered to provide greater protection of vertical features, allowing deeper etches and the integration of more components on each chip.
“Features on chips have gotten extremely small laterally, but sometimes you also want to make them tall,” Darling said. “You can’t make a tall feature if your resist etches away quickly, but with SIS it’s easy.”
Similarly, the technique can be used to manipulate magnetic recording on hard drives or other storage devices, allowing them to increase storage while also getting smaller, Darling said.
Another possibility for the technology is to control how much light bounces off a glass or plastic surface. Using SIS, scientists can engineer surfaces to be almost entirely non-reflective. Using this strategy, scientists can improve performance of solar cells, LEDs and even eyeglasses.
“There are also a lot of applications in electronics,” Elam said. “You can use it to squeeze more memory in a smaller space, or to build faster microprocessors. SIS lithography is a promising strategy to maintain the technological progression and scaling of Moore’s Law.”
The team’s research on the technology has been published in The Journal of Materials Chemistry, The Journal of Physical Chemistry, Advanced Materials and The Journal of Vacuum Science & Technology B.
Argonne is looking for commercial partners interested in licensing and developing the technology for more specific uses. Companies interested in leveraging Argonne’s expertise in SIS should contact partners@anl.gov to learn more and discuss possible collaborations.
Top: Seth Darling, Scientist and Director of the Institute for Molecular Engineering at Argonne National Laboratory. Bottom: Jeff Elam, Senior Chemist in Argonne’ Applied Materials Division (bottom). Picture Credit : Argonne National Laboratory.
Thursday, March 2, 2017
IBM present progress in Lithography for beyond 7 nm chips at SPIE Litho
IBM at #SPIElitho: Seven Advancements for Beyond 7nm Chips https://t.co/B2Q6CqR9sH pic.twitter.com/q0CLbuNfIT— IBM Research (@IBMResearch) February 27, 2017
Thursday, October 13, 2016
University of Minnesota has developed Atomic Layer Lithography by ALD to create long narrow nano gaps
Nanotechweb reports that in 2011, a student (Xiaoshu Chen) figured out how to make vertically-oriented gaps as small as 1 nm over a centimeter length scale, which accordingly is not possible by any other method.
“As a result, we were able to make long and narrow gaps using atomic layer deposition (ALD), which is a robust manufacturing technique for coating ultra-thin films to construct insulating gaps in the sidewalls of patterned metals (see figure above). Thanks to the nature of ALD, we can precisely control the width of the gap, and after depositing metals on the other side of the ALD coating, nanogaps naturally form."
“What makes this atomic layer lithography technique so unique and appealing is that we can expose the nanogaps using just Scotch tape, he tells nanotechweb.org. “This was a rather surprising discovery that Chen made. Since many labs around the world have access to ALD tools (and indeed Scotch tape!), this means that other researchers could practise our technique, easily and inexpensively.”
Full article: Gold nanogap electrodes trap tiny particles
Thursday, April 9, 2015
KAIST develops a photolithographic technology that enables 3D control over functional shapes of microstructures
Professor Kim’s research team discovered that: 1) the areas exposed to UV light lowered the concentration of oxygen and thus resulted in oxygen diffusion; and 2) manipulation of the diffusion speed and direction allowed control of the growth, shape and size of the polymers. Based on these findings, the team developed a new photolithographic technology that enabled the production of micropatterns with three-dimensional structures in various shapes and sizes.

Thursday, February 5, 2015
aBeam fabricates patterns with linewidths down to 1.5nm



Thursday, December 11, 2014
Atomic Layer Lithography - Creation of nanogaps by ALD
