Showing posts with label Power Electronics. Show all posts
Showing posts with label Power Electronics. Show all posts

Thursday, September 22, 2022

Oxford Instruments and ITRI report GaN HEMT device performance by ALD and ALE

GaN HEMT device performance - Oxford Instruments and ITRI announce breakthrough development in GaN HEMT device performance


Oxford Instruments alongside its research partner Industrial Technology Research Institute (ITRI) can today share new and exciting technology developments that will significantly benefit key hyper-growth electric vehicle, datacentre and 5G markets. The technology developments allow critical transistor components to operate at higher voltages which increases performance and reliability, while also achieving a safer and more energy efficient (normally off ‘E-mode’) operation compared to existing devices. The new GaN (gallium nitride) HEMT device architecture is defined by a recessed and insulated gate junction into the AlGaN layer, and this device is referred to as GaN MISHEMT.

In September 2021, Oxford Instruments Plasma Technology and ITRI announced a cooperative research program for next-gen compound semiconductors. This latest breakthrough is an example of that collaboration delivering on its goal of accelerating technology to benefit the partners, their regions and wider global markets. Since that announcement, Oxford Instruments has also unveiled an exclusive supply deal with Laytec, who’s endpoint technology is used to control the GaN MISHEMT recess gate depth. Recess depth accuracy and repeatability is critical to tune the device performance characteristics, and LayTec’s technology is designed specifically for this application achieves target depth accuracy of ±0.5nm. ITRI provides pilot production and value-added services, including process verification and product development. ITRI’s integration services, especially this GaN development project, have proved incredibly beneficial, which quickly proved out the higher performance of GaN MISHEMT and provided a lower risk and faster route to market for the device.

Klaas Wisniewski, Oxford Instruments Strategic Business Development Director commented: “We have excellent strategic partners and customers like Enkris, ITRI, LayTec and ROHM, and our GaN solutions are positioned strongly to serve, grow and gain from big opportunity markets. Our leading Atomic Layer Etch (ALE) and Atomic Layer Deposition (ALD) technology is raising material engineering performance to achieve new levels of surface quality and defect reduction, to meet the growing demand for higher performing devices.” Klaas also added: “With our technology partner ITRI, high volume GaN manufacturing customers and our focussed investment into high value and proprietary process solutions, we expect the GaN device market to be a key driver for our business and technology roadmap.”

Klaas Wisniewski presented a talk entitled “Enhancing GaN HEMT Performance for Power Electronics Applications with Atomic Scale Processing Production Solutions” at Semicon Taiwan Sept 14-16, 2022, TaiNEX 1, Taipei, Taiwan. Please get in touch with us to discuss our latest data and opportunities for partnership and collaboration.

Wednesday, August 31, 2022

Equipment Suppliers Brace For GaN Market Explosion - including Atomic Layer Etch (ALE)

According to a recent article in Semiengineering Power Electronics and RF will drive volume for equipment suppliers, with many new uses underway. According to industry experts interviewed, also ALD and ALE will benefit

“Through an ongoing development program, Lam Research has been establishing a suite of enabling process solutions for GaN semiconductor device fabrication,” said David Haynes, vice president of specialty technologies in Lam Research’s Customer Support Business Group. 

“Key to these capabilities is an atomic layer etch-based process that can provide ultra-low damage, atomic scale precision etching of GaN and related materials. The new, optimized processes can reduce the post etch sheet resistance of the as-etched GaN/AlGaN [aluminum gallium nitride] whilst the surface roughness of the etched material remains comparable to that of the incoming epitaxial layers. Such high-precision, low-damage etch capabilities are critical to the formation of p-GaN or recessed gate high electron mobility transistor (HEMT) architectures used to fabricate normally off GaN devices for power electronics applications.”



Lam’s Kiyo45 reactive ion etch (RIE) tool offering ALE processes of GaN and SiC materials Source: Lam Research

According to the article, Lam has developed proprietary solutions to speed up the ALE process and its ALE chambers can be used in both RF and power GaN fabrication.

Lam sees GaN on SiC RF devices as well established and will remain very important for high power applications in telecommunications infrastructure and defense. Fast development of GaN-on-Si epitaxy will move towards high volume applications for consumer products according to Haynes and explained further: “These will evolve alongside GaN-on-Si power devices that share many of the same process challenges. Today, most GaN-on-SiC RF devices are still made on 150mm or even 100mm wafers. The opportunity for GaN-on-Si devices to be readily processed on 200mm and in the future 300mm wafers, as well as the potential to use complementary metal-oxide semiconductor (CMOS) foundry capacity and even develop integrated solutions with CMOS, will all be key drivers for this transition.”

The Lam Research was early in high volume manufacturing with ALE (2016 BALD Engineering - Born in Finland, Born to ALD: Lam Research - New Atomic Layer Etching Capability Enables Continued Device Scaling) ALE chambers are now also part of their Kyo45 reactive ion etch product platform and offers (lamreserch.com):
  • Superior uniformity and repeatability enabled by a symmetrical chamber design, industry-leading electrostatic chuck technology, and independent process tuning features
  • High productivity with low defectivity on multi-film stacks enabled by in-situ etch capability, continuous plasma, and advanced waferless auto-clean technology
  • Improved critical dimension uniformity using proprietary Hydra® technology that corrects for incoming patterning variability
  • Corvus® plasma sheath tuning for maximum yield of wafer-edge dies
  • Atomic-scale variability control with production-worthy throughput enabled by plasma-enhanced ALE capability
  • Upgradable products for low cost of ownership over several device generations
Sources: 

- Equipment Suppliers Brace For GaN Market Explosion

- Lam Research www.lamresearch.com

Friday, September 4, 2020

Beneq ALD for Power Devices

Atomic Layer Deposition (ALD) provides damage-free surface preparation, and is capable of depositing a variety of high-k dielectric layers with excellent step coverage and quality. 

Beneq ALD provides damage-free surface preparation and deposition of a variety of high-k dielectric layers with excellent step coverage and quality. Gate dielectric stacks deposited by ALD using Beneq Transform™ enable next generation Si, GaN and SiC Power Devices

Read more: LINK 


 

Saturday, March 23, 2019

Aledia Taps Veeco's Compound Semiconductor Expertise, Citing High-Quality Gallium Nitride Epitaxial Film Performance

Display Technology Innovator Expands Portfolio of Veeco Thin Film Process Technologies to Advance Next-Generation 3D Micro-LEDs

PLAINVIEW, New York, — Veeco Instruments Inc. (Nasdaq: VECO) announced today that Aledia, a developer and manufacturer of next-generation 3D LEDs for display applications, has expanded its portfolio of Veeco thin film process equipment to support the development and production of advanced 3D micro-LEDs. Aledia cited Veeco’s proven leadership in compound semiconductor applications, GaN-on-silicon growth performance, and capability to grow a full range of high-quality epitaxial films as key factors influencing its decision. 
 
 
Veeco’s Propel™ Power GaN MOCVD system is designed specifically for the power electronics industry. Featuring a single-wafer reactor platform, capable of processing six- and eight-inch wafers, the system deposits high-quality GaN films for the production of highly efficient power electronic devices.

“We have been impressed with the performance of Veeco’s Propel™ GaN MOCVD platform for large-wafer 3D LED production, and naturally turned to Veeco again to support our advanced LED development,” said Philippe Gilet, co-founder and CTO of Aledia. “Veeco’s solutions meet our rigorous material quality and system delivery requirements along with unmatched material flux stability and repeatability. We are excited to take the next step with them in producing next-generation 3D micro-LEDs.”

The collaboration between Aledia and Veeco reflects the immense promise of micro-LEDs and other advanced LEDs for the future of displays. Micro-LEDs offer high efficiency, brightness and reliability benefits with shorter response time, enabling lighter, thinner and flexible displays with energy saving advantages for applications such as wearables, smartphones, automotive, signage/large TVs, augmented reality/virtual reality, etc. According to a recent Yole Développement report, there have been close to 1,500 patents filed related to micro-LED display from 125 different companies, with the bulk of activity occurring after 2012.

“With the significant shift toward exploration of micro-LEDs for use in next-generation displays, leaders like Aledia are turning to Veeco,” said Gerry Blumenstock, senior vice president and general manager of Veeco’s compound semiconductor business unit. “Veeco’s proven materials engineering expertise puts us in a unique position to offer innovative thin film deposition technologies for customers tackling tough compound semiconductor research, development and production challenges.”

Veeco will exhibit and present at the CS International Conference, March 26-27, 2019 in Brussels, Belgium. Mark McKee, director of product marketing for Veeco’s MOCVD business unit, will present “Accelerating Photonics Growth through Advances in High Performance As/P MOCVD and Wet Processing Technology,” on March 27, 2019 at 9:50 a.m. CET.