Breakthrough Study Utilizes Atomic Layer Deposition and Ar Plasma Treatment for Highly Robust Anode Catalysts in Polymer Electrolyte Membrane Fuel Cells
Key Findings:
1. Tungsten oxide (WO3) supported catalysts, enhanced through Ar plasma surface treatment and Pt nanoparticle deposition using atomic layer deposition (ALD), demonstrated significantly improved durability in diverse operating conditions compared to commercial Pt/C catalysts.
2. The use of WO3 as a catalyst support material, coupled with ALD-based Pt nanoparticle deposition, offers a promising approach for developing high-performance anode catalysts for polymer electrolyte membrane fuel cells (PEMFCs) with enhanced stability and performance.
In an article titled "Atomic layer deposited platinum on tungsten oxide support as high-performance hybrid catalysts for polymer electrolyte membrane fuel cells" Korean researchers discuss the development of a robust anode catalyst for polymer electrolyte membrane fuel cells (PEMFCs). The researchers aimed to address the performance degradation and carbon support corrosion issues commonly observed in PEMFCs under harsh operating conditions.
Graphical abstract
The study focused on using tungsten oxide (WO3) as a catalyst support material due to its ability to provide additional hydrogen ions and electrons through the decomposition of tungsten bronze (HxWO3) formed by the hydrogen spillover effect. The presence of HxWO3 also helped stabilize the cell potential by scavenging oxygen that infiltrates into the anode during start-up and shut-down situations. However, the low electrical conductivity of metal oxides can lead to initial performance degradation.
To overcome this limitation, the researchers performed Ar plasma surface treatment on the WO3 layer to enhance its electrical conductivity. This treatment, known as P-WO3, increased the density of electrons, enabling n-doped conduction. Next, platinum (Pt) nanoparticles were deposited on the P-WO3 support using atomic layer deposition (ALD). ALD allowed for the controlled deposition of Pt at the nanoscale, maximizing the catalytic activity with a minimal amount of precious metal.
The resulting Pt/P-WO3 catalyst exhibited significantly enhanced durability compared to commercial Pt/C catalysts under diverse operating conditions. It demonstrated improved performance and acted as a reversal-tolerant anode catalyst. The study highlights the potential of using WO3 as a support material and the effectiveness of the proposed fabrication method in developing high-performance catalysts for PEMFCs.
Overall, the article presents a novel approach to address the challenges associated with catalyst performance and carbon support corrosion in PEMFCs. By utilizing WO3 as a support material and incorporating Pt nanoparticles through ALD, the researchers achieved an improved and durable anode catalyst for PEMFCs.
The academic institutions behind the article are:
1. Department of Automotive Convergence, Korea University, Republic of Korea.
2. School of Mechanical Engineering, Korea University, Republic of Korea.