Showing posts with label pseudocapacitor. Show all posts
Showing posts with label pseudocapacitor. Show all posts

Friday, August 1, 2014

Perovskite pseudocapacitors for energy storage from Texas

Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes

J. Tyler Mefford, William G. Hardin, Sheng Dai, Keith P. Johnston and Keith J. Stevenson
Nature Materials Volume: 13, Pages: 726–732 01 June 2014 

 

Abstract

Perovskite oxides have attracted significant attention as energy conversion materials for metal–air battery and solid-oxide fuel-cell electrodes owing to their unique physical and electronic properties. Amongst these unique properties is the structural stability of the cation array in perovskites that can accommodate mobile oxygen ions under electrical polarization. Despite oxygen ion mobility and vacancies having been shown to play an important role in catalysis, their role in charge storage has yet to be explored. Herein we investigate the mechanism of oxygen-vacancy-mediated redox pseudocapacitance for a nanostructured lanthanum-based perovskite, LaMnO3. This is the first example of anion-based intercalation pseudocapacitance as well as the first time oxygen intercalation has been exploited for fast energy storage. Whereas previous pseudocapacitor and rechargeable battery charge storage studies have focused on cation intercalation, the anion-based mechanism presented here offers a new paradigm for electrochemical energy storage.