"The biggest problem with designing load-bearing supercaps is preventing them from delaminating," said Westover. "Combining nanoporous material with the polymer electrolyte bonds the layers together tighter than superglue."
Read more at: http://phys.org/news/2014-05-liberating-devices-power-cords-supercaps.html#jCp
A Multifunctional Load-Bearing Solid-State Supercapacitor
A Multifunctional Load-Bearing Solid-State Supercapacitor
Andrew S. Westover, John W. Tian, Shivaprem Bernath, Landon Oakes, Rob Edwards, Farhan N. Shabab, Shahana Chatterjee, Amrutur V. Anilkumar, and Cary L. Pint
Nano Lett., DOI: 10.1021/nl500531r, Publication Date (Web): May 13, 2014
Nano Lett., DOI: 10.1021/nl500531r, Publication Date (Web): May 13, 2014
Abstract: A load-bearing, multifunctional material with the simultaneous capability to store energy and withstand static and dynamic mechanical stresses is demonstrated. This is produced using ion-conducting polymers infiltrated into nanoporous silicon that is etched directly into bulk conductive silicon. This device platform maintains energy densities near 10 W h/kg with Coulombic efficiency of 98% under exposure to over 300 kPa tensile stresses and 80 g vibratory accelerations, along with excellent performance in other shear, compression, and impact tests. This demonstrates performance feasibility as a structurally integrated energy storage material broadly applicable across renewable energy systems, transportation systems, and mobile electronics, among others.
No comments:
Post a Comment