Showing posts with label energy harvesting. Show all posts
Showing posts with label energy harvesting. Show all posts

Tuesday, November 15, 2016

Special Issue: Atomic Layer Deposition for Energy and Environmental Applications

Here is a Special issue in Advanced Materials Interfaces: Atomic Layer Deposition for Energy and Environmental Applications LINK. The issue is guest edited by Neil P. Dasgupta, Liang Li, and Xueliang Sun.

The ALD Energy and Environment special issue has 11 invited research articles and 5 review articles  from leading ALD experts. The focus is on the following applications:
  • photo-voltaics
  • batteries
  • supercapacitors
  • photoelectrochemical cells
  • transparent electrodes
  • sensors
  • environmental barrier layers. 
The editors argue that ALD for Energy, judging by the number of publications the last 15 years (Web of Science database) is one of the faster growing application fields. Since we have a christian holiday tomorrow in Saxony I had some time to make a plot based on Google Scholar, which includes also patents. Yes you can see exactly the same growth trend. So folks ALD and Energy is coming and that is why you should check it out below (Embedded Twitter link to the journal).

Google Scholar year by year for "atomic layer deposition" AND energy. Obviously energy can also be used for binding energy etc. but I think the message is clear.

Tuesday, August 23, 2016

Aalto University Finland produces large-area thermoelectric nanostructures by ALD

Here is an interesting ALD energy application by Aalto University researchers published in Nanotechweb and in Nanotechnology (abstract below): Nanotechnology offers a potential route towards improved thermoelectric conversion efficiency. Atomic layer deposition (ALD) has also recently become increasingly interesting for thermoelectrics as it allows bottom-up fabrication of complex nanostructures in a parallel fashion. The research on large-area thermoelectric nanostructures carried out at Aalto University and reported in Nanotechnology, paves the way for novel fabrication approaches for energy conversion devices.




Continue reading: http://nanotechweb.org/cws/article/lab/65989 

Large-area thermoelectric high-aspect-ratio nanostructures by atomic layer deposition 

Mikko Ruoho, Taneli Juntunen and Ilkka Tittonen

Published 25 July 2016 • © 2016 IOP Publishing Ltd
Nanotechnology, Volume 27, Number 35

Abstract :
We report on the thermoelectric properties of large-area high-aspect-ratio nanostructures. We fabricate the structures by atomic layer deposition of conformal ZnO thin films on track-etched polycarbonate substrate. The resulting structure consists of ZnO tubules which continue through the full thickness of the substrate. The electrical and thermal properties of the structures are studied both in-plane and out-of-plane. They exhibit very low out-of-plane thermal conductivity down to 0.15 W m−1 K−1 while the in-plane sheet resistance of the films was found to be half that of the same film on glass substrate, allowing material-independent doubling of output power of any planar thin-film thermoelectric generator. The wall thickness of the fabricated nanotubes was varied within a range of up to 100 nm. The samples show polycrystalline nature with (002) preferred crystal orientation.

Saturday, October 31, 2015

ALD of Pd Nanoparticles on TiO2 Nanotubes for Ethanol Electrooxidation

Direct Ethanol Fuel Cells DEFCs are considered one of the promising renewable energy sources, as they can produce electrical energy directly from the ethanol electrooxidation reaction. The efficiency of ethanol electrooxidation is a big question from research point of view. Here French and Canadian researchers show how ALD Pd nano particles grown in anodic titanium oxide nanotubes can be used for Ethanol Electrooxidation.

Atomic Layer Deposition of Pd Nanoparticles on TiO2 Nanotubes for Ethanol Electrooxidation: Synthesis and Electrochemical Properties

Loïc Assaud, Nicolas Brazeau, Maïssa K. S. Barr, Margrit Hanbücken, Spyridon Ntais, Elena A. Baranova, and Lionel Santinacc

ACS Appl. Mater. Interfaces, Article ASAP
DOI: 10.1021/acsami.5b06056

 
 
Palladium nanoparticles are grown on TiO2 nanotubes by atomic layer deposition (ALD), and the resulting three-dimensional nanostructured catalysts are studied for ethanol electrooxidation in alkaline media. The morphology, the crystal structure, and the chemical composition of the Pd particles are fully characterized using scanning and transmission electron microscopies, X-ray diffraction, and X-ray photoelectron spectroscopy. The characterization revealed that the deposition proceeds onto the entire surface of the TiO2 nanotubes leading to the formation of well-defined and highly dispersed Pd nanoparticles. The electrooxidation of ethanol on Pd clusters deposited on TiO2 nanotubes shows not only a direct correlation between the catalytic activity and the particle size but also a steep increase of the response due to the enhancement of the metal–support interaction when the crystal structure of the TiO2 nanotubes is modified by annealing at 450 °C in air.

Monday, October 26, 2015

Atomic Layer Deposition (ALD) in Energy, Environment, and Sustainability

Atomic Layer Deposition (ALD) in Energy, Environment, and Sustainability

Figure
Figure. Schematic diagram of an ideal surface coating layer on active materials. Image provided by Xueliang Sun.

Guest Editors

Hongjin FanNanyang Technological University, Singapore
Yongfeng MeiFudan University, China
Mato KnezCIC nanoGUNE Research Center, Spain

Scope

The essential characteristics of an atomic layer deposition (ALD) reaction are the sequential self-limiting surface reactions to achieve conformal thin films with sub-monolayer thickness control. This advantage over other deposition processes renders a wide range of applications. While ALD was conventionally applied mainly in semiconductor electronic industry, recently, it is receiving increasing attention for wider applications in energy, environment, and sustainability research, with the advance in recipe development.
This focus collection will centre on the increasing importance of ALD techniques in developing innovative nanoscale materials, processes, devices, and systems relating to energy and environmental applications. Original and Review work detailing the development of energy nanomaterials and devices, including photovoltaics, batteries and supercapacitors, fuel cells, photocatalysts, and photoelectrochemical cells are solicited. Additionally developments in nanophotonics, including applications of ALD in new plasmonics, nanoscale laser, and metamaterials research are included. Interest of this collection also extends to innovations in chemical and biosensing using ALD, for example, organic pollution degradation, surface plasmon sensors, and quantum dot biomarkers.
The scope of this collection includes:
  • Fabrication and synthesis
  • Energy storage and conversion
  • Micro and nano-photonics
  • Sensor for environment and healthcare
  • Devices integration and reliability
We hope this issue provides a broad overview of the current state and guidance to the future.

Invited reviews

Applications of atomic layer deposition in solar cellsOPEN ACCESSWenbin Niu, Xianglin Li, Siva Krishna Karuturi, Derrick Wenhui Fam, Hongjin Fan, Santosh Shrestha, Lydia Helena Wong and Alfred Iing Yoong Tok2015 Nanotechnology 26 064001

Viewpoints

Papers

The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensorsDavid J Mandia, Wenjun Zhou, Matthew J Ward, Howie Joress, Jeffrey J Sims, Javier B Giorgi, Jacques Albert and Seán T Barry2015 Nanotechnology 26 434002
Extremely high efficient nanoreactor with Au@ZnO catalyst for photocatalysisChung-Yi Su, Tung-Han Yang, Vitaly Gurylev, Sheng-Hsin Huang, Jenn-Ming Wu and Tsong-Pyng Perng2015 Nanotechnology 26 394001
Highly photocatalytic TiO2 interconnected porous powder fabricated by sponge-templated atomic layer depositionShengqiang Pan, Yuting Zhao, Gaoshan Huang, Jiao Wang, Stefan Baunack, Thomas Gemming, Menglin Li, Lirong Zheng, Oliver G Schmidt and Yongfeng Mei2015 Nanotechnology 26 364001
Control of the initial growth in atomic layer deposition of Pt films by surface pretreatmentJung Joon Pyeon, Cheol Jin Cho, Seung-Hyub Baek, Chong-Yun Kang, Jin-Sang Kim, Doo Seok Jeong and Seong Keun Kim2015 Nanotechnology 26 304003
Deposition of uniform Pt nanoparticles with controllable size on TiO2-based nanowires by atomic layer deposition and their photocatalytic propertiesChih-Chieh Wang, Yang-Chih Hsueh, Chung-Yi Su, Chi-Chung Kei and Tsong-Pyng Perng2015 Nanotechnology 26 254002
In-situ atomic layer deposition of tri-methylaluminum and water on pristine single-crystal (In)GaAs surfaces: electronic and electric structuresT W Pi, Y H Lin, Y T Fanchiang, T H Chiang, C H Wei, Y C Lin, G K Wertheim, J Kwo and M Hong2015 Nanotechnology 26 164001
Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 batteryXiangyi Luo, Mar Piernavieja-Hermida, Jun Lu, Tianpin Wu, Jianguo Wen, Yang Ren, Dean Miller, Zhigang Zak Fang, Yu Lei and Khalil Amine2015 Nanotechnology 26 164003
Inert ambient annealing effect on MANOS capacitor memory characteristicsNikolaos Nikolaou, Panagiotis Dimitrakis, Pascal Normand, Dimitrios Skarlatos, Konstantinos Giannakopoulos, Konstantina Mergia, Vassilios Ioannou-Sougleridis, Kaupo Kukli, Jaakko Niinistö, Kenichiro Mizohata, Mikko Ritala and Markku Leskelä2015 Nanotechnology 26 134004
Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performancesGiuseppe Fiorentino, Sten Vollebregt, F D Tichelaar, Ryoichi Ishihara and Pasqualina M Sarro2015 Nanotechnology 26 064002
Deposition of ultra thin CuInS2 absorber layers by ALD for thin film solar cells at low temperature (down to 150 °C)Nathanaelle Schneider, Muriel Bouttemy, Pascal Genevée, Daniel Lincot and Frédérique Donsanti2015 Nanotechnology 26 054001
Photocatalytic activity and photocorrosion of atomic layer deposited ZnO ultrathin films for the degradation of methylene blueYan-Qiang Cao, Jun Chen, Hang Zhou, Lin Zhu, Xin Li, Zheng-Yi Cao, Di Wu and Ai-Dong Li2015 Nanotechnology 26 024002
Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxideStephan Ratzsch, Ernst-Bernhard Kley, Andreas Tünnermann and Adriana Szeghalmi2015 Nanotechnology 26 024003
Gas sensing properties and p-type response of ALD TiO2 coated carbon nanotubesCatherine Marichy, Nicola Donato, Mariangela Latino, Marc Georg Willinger, Jean-Philippe Tessonnier, Giovanni Neri and Nicola Pinna2015 Nanotechnology 26 024004
Air-Stable flexible organic light-emitting diodes enabled by atomic layer depositionYuan-Yu Lin, Yi-Neng Chang, Ming-Hung Tseng, Ching-Chiun Wang and Feng-Yu Tsai2015 Nanotechnology 26 024005
Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer depositionHuan-Yu Shih, Ming-Chih Lin, Liang-Yih Chen and Miin-Jang Chen2015 Nanotechnology 26 014002
NiO/nanoporous graphene composites with excellent supercapacitive performance produced by atomic layer depositionCaiying Chen, Chaoqiu Chen, Peipei Huang, Feifei Duan, Shichao Zhao, Ping Li, Jinchuan Fan, Weiguo Song and Yong Qin2014 Nanotechnology 25 504001
Electrochemical synthesis of highly ordered nanowires with a rectangular cross section using an in-plane nanochannel arrayPhilip Sergelius, Josep M Montero Moreno, Wehid Rahimi, Martin Waleczek, Robert Zierold, Detlef Görlitz and Kornelius Nielsch2014 Nanotechnology 25 504002
Highly ordered and vertically oriented TiO2/Al2O3 nanotube electrodes for application in dye-sensitized solar cellsJae-Yup Kim, Kyeong-Hwan Lee, Junyoung Shin, Sun Ha Park, Jin Soo Kang, Kyu Seok Han, Myung Mo Sung, Nicola Pinna and Yung-Eun Sung2014 Nanotechnology 25 504003
Distinguishing plasmonic absorption modes by virtue of inversed architectures with tunable atomic-layer-deposited spacer layerYun Zhang, Kenan Zhang, Tianning Zhang, Yan Sun, Xin Chen and Ning Dai2014 Nanotechnology 25 504004
Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanodeZhaodong Li, Chunhua Yao, Fei Wang, Zhiyong Cai and Xudong Wang2014 Nanotechnology 25 504005
Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteriesBiqiong Wang, Jian Liu, Qian Sun, Ruying Li, Tsun-Kong Sham and Xueliang Sun2014 Nanotechnology 25 504007
Nanostructured TiO2/carbon nanosheet hybrid electrode for high-rate thin-film lithium-ion batteriesS Moitzheim, C S Nimisha, Shaoren Deng, Daire J Cott, C Detavernier and P M Vereecken2014 Nanotechnology 25 504008

Saturday, October 24, 2015

Ferroelectric HfO2 enable giant pyroelectric energy conversion and highly efficient supercapacitors

A new application for energy harvesting and storage of ferroelectric hafnium oxide has been investigated and proven by researchers at NaMLab in Dresden, RWTHA Aachen and TU Munich, Germany. One major advantage of the use of hafnium oxide over other materials is the low cost of fabrication of these films while it has been proven feasible by existing semiconductor process technology like in ALD in CMOS high-k / metal gate and high-k node dielectric for DRAM capacitors.

To summarize this investigation:
  • Ferroelectric phase transitions in Si:HfO2 thin films yield giant pyroelectricity.
  • Si:HfO2 for highly efficient supercapacitors is first reported.
  • Si:HfO2 shows highest figures of merit for pyroelectric energy harvesting.
  • Si:HfO2 for electrocaloric cooling and infrared sensing is first reported.

Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient super capacitors




Temperature- and field-induced phase transitions in ferroelectric nanoscale TiN/Si:HfO2/TiN capacitors with 3.8 to 5.6 mol% Si content are investigated for energy conversion and storage applications. Films with 5.6 mol% Si concentration exhibit an energy storage density of ~40 J/cm3 with a very high efficiency of ~80% over a wide temperature range useful for supercapacitors. Furthermore, giant pyroelectric coefficients of up to −1300 µC/(m2 K) are observed due to temperature dependent ferroelectric to paraelectric phase transitions. The broad transition region is related to the grain size distribution and adjustable by the Si content. This strong pyroelectricity yields electrothermal coupling factors k2 of up to 0.591 which are more than one order of magnitude higher than the best values ever reported. This enables pyroelectric energy harvesting with the highest harvestable energy density ever reported of 20.27 J/cm3 per Olsen cycle. Possible applications in infrared sensing are discussed. Inversely, through the electrocaloric effect an adiabatic temperature change of up to 9.5 K and the highest refrigerant capacity ever reported of 19.6 J/cm3 per cycle is achievable. This might enable energy efficient on-chip electrocaloric cooling devices. Additionally, low cost fabrication of these films is feasible by existing semiconductor process technology.

Saturday, March 28, 2015

Electrostatic supercaps by ALD anodic alumina for energy harvesting [OPEN ACCESS]

Development of electrostatic supercapacitors by atomic layer deposition on nanoporous anodic aluminum oxides for energy harvesting applications [OPEN ACCESS]
Lucía Iglesias, Víctor Vega, Javier García, Blanca Hernando and Víctor M. Prida
Front. Phys., 25 March 2015 | doi: 10.3389/fphy.2015.00012

http://www.frontiersin.org/files/Articles/134710/fphy-03-00012-r2/image_m/fphy-03-00012-g001.jpg 

Schematic view of the cross section of the supercapacitor engineered onto the NAAM indicating the CDC layered structure and defining the lattice parameters involved in the capacitance calculation. Conductive layers of AZO are in red and dielectric layer of alumina in brown. Outlined are the 3 different contributions to total capacitance of the-designed supercapacitor prototype.

Nanomaterials can provide innovative solutions for solving the usual energy harvesting and storage drawbacks that take place in conventional energy storage devices based on batteries or electrolytic capacitors, because they are not fully capable for attending the fast energy demands and high power densities required in many of present applications. Here, we report on the development and characterization of novel electrostatic supercapacitors made by conformal Atomic Layer Deposition on the high open surface of nanoporous anodic alumina membranes employed as templates. The structure of the designed electrostatic supercapacitor prototype consists of successive layers of Aluminum doped Zinc Oxide, as the bottom and top electrodes, together Al2O3 as the intermediate dielectric layer. The conformality of the deposited conductive and dielectric layers, together with their composition and crystalline structure have been checked by XRD and electron microscopy techniques. Impedance measurements performed for the optimized electrostatic supercapacitor device give a high capacitance value of 200 μF/cm2 at the frequency of 40 Hz, which confirms the theoretical estimations for such kind of prototypes, and the leakage current reaches values around of 1.8 mA/cm2 at 1 V. The high capacitance value achieved by the supercapacitor prototype together its small size turns these devices in outstanding candidates for using in energy harvesting and storage applications.
 
http://www.frontiersin.org/files/Articles/134710/fphy-03-00012-r2/image_m/fphy-03-00012-g007.jpg
 
(A) TEM top view image of a planar section of the sample structure after being carefully prepared for displaying the nanopores after depositing the CDC structure. (B) TEM image showing the different CDC layers constituting the supercapacitor: BE and TE of AZO layers are represented in red color and the Al2O3 dielectric layer in green. (C) STEM image and (D) compositional analysis along the line-scan profile of the pore indicated in (C), where it is clearly evidenced the presence of three elements [zinc (blue), aluminum (red) and oxygen (green)], which spatially match with the CDC structure deposited on the NAAM.

Monday, September 15, 2014

Stanford engineering team has built a radio the size of an ant

A Stanford engineering team has built a radio the size of an ant, a device so energy efficient that it gathers all the power it needs from the same electromagnetic waves that carry signals to its receiving antenna.

Press release: A Stanford engineering team, in collaboration with researchers from the University of California, Berkeley, has built a radio the size of an ant, a device so energy efficient that it gathers all the power it needs from the same electromagnetic waves that carry signals to its receiving antenna – no batteries required.

Designed to compute, execute and relay commands, this tiny wireless chip costs pennies to fabricate – making it cheap enough to become the missing link between the Internet as we know it and the linked-together smart gadgets envisioned in the "Internet of Things."

"The next exponential growth in connectivity will be connecting objects together and giving us remote control through the web," said Amin Arbabian, an assistant professor of electrical engineering who recently demonstrated this ant-sized radio chip at the VLSI Technology and Circuits Symposium in Hawaii.
 

The tiny radio-on-a-chip gathers all the power it needs from the same electromagnetic waves that carry signals to its receiving antenna.

Much of the infrastructure needed to enable us to control sensors and devices remotely already exists: We have the Internet to carry commands around the globe, and computers and smartphones to issue the commands. What's missing is a wireless controller cheap enough to so that it can be installed on any gadget anywhere.

"How do you put a bi-directional wireless control system on every lightbulb?" Arbabian said. "By putting all the essential elements of a radio on a single chip that costs pennies to make."

Cost is critical because, as Arbabian observed, "We're ultimately talking about connecting trillions of devices."
 
More information:
A Power-Harvesting Pad-Less mm-Sized 24/60GHz Passive Radio with On-Chip Antennas, VLSI Technology and Circuits Symposium in Hawaii 2014.

 
Movie from Youtube.com (Stanford)

... and then just think what you could do with this radio chip on a MEMS mad bug like in the video below...


 
Researchers at Harvard and the Wyss Institute are developing a robotic bee that could be used to pollinate plants in the future. (Youtube.com)

Friday, May 30, 2014

Leaky ALD TiO2 stabilizes common semiconductors for solar fuel generation

Nanowerk News report today on "Caltech researchers at the Joint Center for Artificial Photosynthesis (JCAP) have devised a method for protecting these common semiconductors from corrosion even as the materials continue to absorb light efficiently. The research, led by Shu Hu, a postdoctoral scholar in chemistry at Caltech, appears in the May 30 issue of the journal Science" (Abstract below) 


AmorphousTiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient wateroxidation 
Shu Hu, Matthew R. Shaner, Joseph A. Beardslee, Michael Lichterman, Bruce S. Brunschwig, Nathan S. Lewis
Science 30 May 2014, Vol. 344 no. 6187 pp. 1005-1009

Abstract: Although semiconductors such as silicon (Si), gallium arsenide (GaAs), and gallium phosphide (GaP) have band gaps that make them efficient photoanodes for solar fuel production, these materials are unstable in aqueous media. We show that TiO2 coatings (4 to 143 nanometers thick) grown by atomic layer deposition prevent corrosion, have electronic defects that promote hole conduction, and are sufficiently transparent to reach the light-limited performance of protected semiconductors. In conjunction with a thin layer or islands of Ni oxide electrocatalysts, Si photoanodes exhibited continuous oxidation of 1.0 molar aqueous KOH to O2 for more than 100 hours at photocurrent densities of >30 milliamperes per square centimeter and ~100% Faradaic efficiency. TiO2-coated GaAs and GaP photoelectrodes exhibited photovoltages of 0.81 and 0.59 V and light-limiting photocurrent densities of 14.3 and 3.4 milliamperes per square centimeter, respectively, for water oxidation.

 

 
The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego. (Youtube.com)