Thursday, January 25, 2018

High Dielectric Constant Materials for Nanoscale Devices and Beyond

Here is a nice review on the introduction of high-k materials in the semiconductor industry and a future outlook by Prof. Hiroshi Iwai at Tokyo and Prof. Akira Toriumi Institute of Technology and their partner Prof. Durga Misra at New Jersey Institute of Technology. Thank you for sharing this one Rob Clark! The paper is part of a winter special issue in Interface (by ECS) with focus on "Importance of dielectric science"  and is free for download.
 


The authors conclude that:
  • The step coverage advantage of atomic layer deposition (ALD and is possible for, high‑k migration to FinFET CMOS technology.
  • The use of high‑k on new semiconductor substrates such as III-V, Ge and 2D materials is currently being investigated and faces many challenges. 
  • The discovery of ferroelectric properties of HfO2 makes it viable for more potential applications.


High Dielectric Constant Materials for Nanoscale Devices and Beyond
Hiroshi Iwai, Akira Toriumi and Durga Misra

Electrochem. Soc. Interface Winter 2017 volume 26, issue 4, 77-81

Abstract: Tremendous progress of CMOS integrated circuits have been conducted by the down-scaling or the miniaturization of MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). Ten years, ago, the huge direct-tunneling gate leakage current through the thin gate SiO2 film of 1 nm thickness made it impossible to further scale-down the MOSFETs, and replacing the SiO2 by HfO2-based higher-dielectric constant (high-k) material was the solution. In this paper, the history of high-k gate insulator film development and two topics from recent research results regarding ferroelectricity and reliability are described.

No comments:

Post a Comment