Showing posts with label chipwars. Show all posts
Showing posts with label chipwars. Show all posts

Monday, September 9, 2024

New Export Controls on ALD, ALE and ASD Technologies Effective September 2024 to Safeguard National Security

The US Bureau of Industry and Security (BIS) is introducing* stringent export controls targeting advanced technologies essential to national security, particularly within the semiconductor, quantum computing, and additive manufacturing sectors. These controls include new and revised Export Control Classification Numbers (ECCNs) and specific restrictions on critical equipment and materials, such as those involved in Gate-All-Around Field-Effect Transistor (GAAFET) technology, Atomic Layer Etching (ALE), and Atomic Layer Deposition (ALD). The controls aim to safeguard U.S. technological leadership while harmonizing with international export control standards. Specific restrictions apply to high-precision wafer processing equipment and isotopically enriched materials used in quantum computing, reflecting the critical importance of these technologies. These measures ensure that while international collaboration continues, sensitive technologies remain protected under national security protocols.


BIS has introduced new export controls focused on advanced technologies, particularly in the semiconductor, quantum computing, and additive manufacturing sectors. These controls include new Export Control Classification Numbers (ECCNs), revisions to existing ones, and the addition of new license exceptions for countries with similar technical controls. This rule aims to protect national security and advance foreign policy objectives by aligning U.S. export controls with those of international partners. The controls cover a wide range of items, including quantum computing technologies and semiconductor manufacturing equipment, reflecting the critical importance of these technologies to national security. The rule is effective immediately, though there are delayed compliance dates for certain items, allowing businesses time to adjust to the new requirements.

BIS has also established a framework to differentiate between items controlled multilaterally and those controlled through Implemented Export Controls (IEC), which are harmonized with international partners. The new regulations include provisions for annual reporting, particularly concerning the deemed export of quantum technology and software, highlighting the global nature of innovation in these fields. The rule is designed to support U.S. technology leadership while ensuring that export controls do not impede international collaboration, particularly in areas like quantum computing, where global expertise is crucial. Comments on the rule and its potential impact on supply chains and compliance programs are invited, with a focus on refining the scope and clarity of the new ECCNs and license exceptions.

BIS specifies that the restrictions on GAAFET (Gate-All-Around Field-Effect Transistor) technology primarily focus on the "technology" required for the "development" or "production" of GAAFET structures. This includes process recipes and other detailed specifications necessary for fabricating these advanced semiconductor devices. These restrictions are captured under ECCN 3E905, which applies to the "technology" for GAAFETs but does not extend to vertical GAAFET architectures used in 3D NAND. The export, reexport, or transfer of this technology to certain countries requires a license due to its national security and regional stability implications. However, the rules include specific exceptions for existing collaborations and provisions for continued access under certain conditions.

The specific wafer processing technologies restricted for export include:

Dry Etching Equipment:

Equipment designed for isotropic dry etching, as well as anisotropic etching of dielectric materials. These include technologies that enable the fabrication of high aspect ratio features, with aspect ratios greater than 30:1 and a lateral dimension on the top surface of less than 100 nn.  

The specific restrictions on Atomic Layer Etching (ALE) equipment are detailed under the export control regulations. The BIS has imposed controls on equipment designed or modified for anisotropic dry etching, which includes certain types of ALE equipment. These tools, particularly those using RF pulse-excited plasma, pulsed duty cycle excited plasma, and other advanced techniques, are now restricted due to their critical role in the precise fabrication of high-performance semiconductor devices. The restrictions apply to ALE equipment that is capable of producing high aspect ratio features, which are essential for advanced semiconductor manufacturing, making these tools subject to national security and regional stability controls .

Deposition Technologies:

Equipment designed for the selective bottom-up chemical vapor deposition (CVD) of tungsten fill metal, and other deposition processes such as those for tungsten nitride, tungsten, and cobalt layers. This also includes atomic layer deposition (ALD) equipment designed for area selective deposition of barriers or liners.

The restrictions on Atomic Layer Deposition (ALD) equipment are focused on several key types of equipment essential for advanced semiconductor manufacturing. Specifically, ALD equipment designed for area-selective deposition of barriers or liners using organometallic compounds is controlled. This includes equipment capable of area-selective deposition (ASD) that enables fill metal contact to an underlying electrical conductor without a barrier layer at the fill metal via interface to the conductor. Additionally, ALD equipment designed for depositing tungsten (W) to fill interconnects or channels less than 40 nm wide is also restricted. These restrictions are imposed due to the critical role these technologies play in the precision required for the fabrication of next-generation semiconductor devices.

These technologies are controlled under ECCNs (Export Control Classification Numbers) such as 3B001 and related classifications, and are subject to national security (NS) and regional stability (RS) controls.

The specific materials, chemicals, or precursors that are being restricted under the new export controls include:

These restrictions reflect the importance of controlling advanced materials that play a crucial role in emerging technologies, particularly those with significant national security implications, i.e., quantum technologies.

Epitaxial Materials: This includes materials with at least one epitaxially grown layer of silicon or germanium containing a specified percentage of isotopically enriched silicon or germanium. These materials are controlled due to their critical role in developing spin-based quantum computers.

Fluorides, Hydrides, Chlorides: Specific chemicals of silicon or germanium that contain a certain isotopic composition are also restricted. These chemicals are essential in semiconductor manufacturing processes, particularly in the development of quantum technologies.

Silicon, Silicon Oxides, Germanium, or Germanium Oxides: These materials, when isotopically enriched, are restricted due to their applications in quantum computing and other advanced technologies. The control extends to various forms such as substrates, lumps, ingots, boules, and preforms . 

* The new export controls introduced by the Bureau of Industry and Security (BIS) are effective as of September 6, 2024. However, there are delayed compliance dates for certain items, allowing businesses until November 5, 2024, to comply with the new requirements, particularly for specific quantum technologies and related equipment. This delayed compliance is intended to give affected parties time to adjust to the new regulations.

Source:

2024-19633.pdf (SECURED) (govinfo.gov)

Monday, September 2, 2024

Rising Prices of Critical Metals Highlight Their Importance in Semiconductor Manufacturing Amid Global Supply Challenges

Germanium, gallium, and antimony are crucial to the semiconductor industry due to their unique electrical properties that make them essential for producing advanced electronic components. Germanium is used as a semiconductor material, particularly in high-speed electronics and fiber optics, due to its excellent ability to efficiently transmit electrical signals. Gallium, often used in the form of gallium arsenide, is vital for producing high-performance chips, LEDs, and solar cells because it can operate at higher frequencies and temperatures than silicon. Antimony is used in creating semiconducting alloys and compounds that improve the efficiency and performance of devices like diodes and infrared detectors. These materials are key to advancing the capabilities of modern electronics, making them indispensable in the production of next-generation technologies.

The prices of rare earth metals, essential for semiconductor manufacturing, have more than doubled in the past year following China's retaliation against U.S. semiconductor restrictions. Notably, China's export restrictions on metals like germanium and gallium have caused significant price hikes, with germanium seeing a 115% increase to $2,600 per kilogram, up from $1,200 in the first quarter of 2023. Gallium prices have also surged by 75%, rising from around $300 per kilogram at the beginning of 2024 to approximately $530 today. These price increases reflect China's strategic control over these critical materials in response to global trade tensions.


                            Germanium price (LINK)

The situation is expected to worsen, with no signs of price relief on the horizon. Starting October 1, 2024, all rare earth metals in China will be effectively under state control, and the export of gallium and germanium has required a license since August 2023. China's tightening grip on these minerals is seen as a powerful tool to counter U.S. efforts to impede its advancement in semiconductor production. Currently, China dominates the global supply of these materials, producing 94% of the world's gallium and 73% of germanium in 2023, and its export volumes have reportedly dropped by up to 50% since the restrictions were imposed.

China's export restrictions on critical metals may impact US and European industries by causing supply shortages and driving up costs in the semiconductor and electronics sectors. These disruptions can slow production and raise consumer prices. Additionally, the restrictions may force companies to seek alternative, potentially more expensive, sources, straining global supply chains and weakening the competitive position of US and European industries.

Sources:

Halvledarmetaller skenar i pris – Semi14

China Warns Japan Over Semiconductor Export Curbs as US Pressure and Economic Tensions Mount

China has issued strong warnings to Japan against imposing new restrictions on the sale and servicing of chipmaking equipment to Chinese firms, in response to pressure from the United States. The US is seeking to align Japan with its own restrictive measures aimed at curbing China’s semiconductor advancements. Japan is concerned about potential retaliation from China, particularly the possibility that China might cut off access to critical minerals essential for its automotive industry, which could severely impact companies like Toyota. This echoes past instances where China restricted exports of rare earths to Japan during diplomatic tensions.

The US is also considering more stringent restrictions on chipmaking tools and high-bandwidth memory chips, crucial for AI development, as part of its broader strategy to limit China's technological progress. However, the US has so far refrained from using the foreign direct product rule (FDPR) against Japan, a powerful measure that could control sales of products worldwide if they use any American technology. While diplomatic efforts continue, the situation is complicated by upcoming political changes in Japan and the US, with Japan seeking to ensure its supply chain security while managing pressure from both China and the US.

China's heavy reliance on Japan for crucial semiconductor materials and equipment, such as high-end photoresists and wafer processing tools, significantly complicates its stance in the ongoing tech war with the US and Japan. Four Japanese companies—JSR, Tokyo Ohka Kogyo, Shin-Etsu Chemical, and Fujifilm Electronic Materials—dominate the global market for advanced photoresists, holding about 70% of the market share, making China highly dependent on them despite efforts to develop its own production capabilities. Additionally, Japan's Tokyo Electron, Screen Holdings, Nikon, Kokusai, and Lasertec are key suppliers of semiconductor wafer processing equipment to China. Japanese chemical companies, such as ADEKA Corporation, JSR Corporation, and Mitsui Chemicals, are key suppliers of CVD and ALD precursors. These companies produce a range of specialized chemicals used in semiconductor manufacturing, including organometallic precursors, silanes, and other complex compounds essential for deposition processes.



Japan's exports rose 5.4% year-on-year in June, cooling from 13.5% growth in May and underscoring concerns that a slowdown in China may hamper Japan's trade-reliant economy. The trade balance came to a surplus of 224.04 billion yen.

In June 2024, Japan's export growth slowed to 5.4% year-on-year, down from 13.5% in May, raising concerns that a slowdown in China could negatively impact Japan's trade-dependent economy. Despite a weak yen boosting the value of exports, the actual volume of exports declined by 6.2%, highlighting the challenges Japan faces with sluggish external demand. Exports to China, which grew by 7.2%, were primarily driven by chip-making equipment, but this growth was significantly lower than the 17.8% increase seen in May. The trade balance swung to a surplus of 224 billion yen, as imports grew less than expected, marking Japan's first trade surplus in three months. However, analysts express concern over the lack of a strong export growth engine among Japan's trading partners, including the United States, Europe, and China.

This dependency on Japanese technology and materials puts China in a vulnerable position as Japan faces increasing pressure from the US to align with stricter export controls, further raising the stakes in the ongoing geopolitical and economic tensions.

Sources

China Warns Japan of Retaliation for Possible New Chip Curbs - Bloomberg

Japan export growth cools amid worries about China slowdown | Reuters

Tuesday, May 4, 2021

CBS 60 Minutes - Chip shortage highlights U.S. dependence on fragile supply chain

Seventy-five percent of semiconductors, or microchips — the tiny operating brains in just about every modern device — are manufactured in Asia. Lesley Stahl talks with leading-edge chip manufacturers, TSMC and Intel, about the global chip shortage and the future of the industry.
  • Pat Gelsinger: 25 years ago, the United States produced 37% of the world's semiconductor manufacturing in the U.S. Today, that number has declined to just 12%
  • Within the world of global collaboration, there's intense competition. Days after Intel announced spending $20 billion on two new fabs, TSMC announced it would spend $100 billion over three years on R&D, upgrades, and a new fab in Phoenix, Arizona, Intel's backyard, where the Taiwanese company will produce the chips Apple needs but the Americans can't make.

Intel CEO Pat Gelsinger shows CBS correspondent Lesley Stahl a silicon wafer.