Wednesday, June 4, 2014

Missouri S&T is synthesizing multi-element ENPs for Single Particle ICPMS references using ALD

Missouri S&T is synthesizing multi-element ENPs for Single Particle ICPMS references using ALD. Missouri University of Science and Technology and Perklin Elmer reports : The growing use of nanoparticles in consumer projects has raised concerns about their adverse effects on human health and the environment. A new technology being tested at Missouri University of Science and Technology could improve the field of study by giving researchers a tool to quickly measure a wide range of characteristics and detect trace levels of nanoparticles.
 
 

The technology, Single Particle (SP) – Inductively Coupled Plasma (ICP) – Mass Spectrometry (MS), addresses one of the National Nanotechnology Initiative’s most urgent priorities, tracking the fate of engineered nanoparticles. The NNI was established by the U.S. government for the research and development of nanoscale projects.

International instrumentation company PerkinElmer installed its NexION 300/350D-ICP-MS on the Missouri S&T campus in February. The instrument, which measures nanoparticles 10 times faster than other ICP-MS on the market, is being used as part of a collaborative research project between PerkinElmer and Missouri S&T to develop SP-ICP-MS methods for characterizing novel engineered nanoparticles (ENP) and investigate their mechanisms and toxicity

Dr. Xinhua Liang, assistant professor of chemical and biochemical engineering at Missouri S&T, another member of the research team, is synthesizing multi-element ENPs as calibration and reference material using advanced atomic layer deposition (ALD) technology. ALD is best known for its ability to deposit high-quality thin films of materials based on alternating pulses of chemical vapors that react with surfaces. Liang is using the technology to deposit metal oxide films on the ENPs.
 
Read the full story here.