Showing posts with label EuroCVD & Baltic ALD. Show all posts
Showing posts with label EuroCVD & Baltic ALD. Show all posts

Tuesday, October 5, 2021

The dynamics in CVD and PEALD of InN

Epitaxial nanometer-thin indium nitride (InN) films are considered promising active layers in various device applications but remain challenging to deposit. Pedersen's group at Linköping University, Sweden, has compared the morphological evolution and characterizations of InN films with various growth conditions in CVD by both a plasma ALD approach and a conventional metalorganic CVD approach. 

Their results show that a time-resolved precursor supply is highly beneficial for deposition of smooth and continuous InN nanometer-thin films. The time for purging the reactor between the precursor pulses and low deposition temperature are key factors to achieve homogeneous InN. The gas exchange dynamics of the reactor is further studied using computational fluid dynamics. 

Top-view SEM images of InN grown on SiC by using both ALD and continuous CVD at different deposition temperatures: (a) 320, (b) 400, and (c) 450 °C. In each figure, the result from ALD is shown in the upper right part while the result from continuous CVD is shown in the bottom left part. (Journal of Applied Physics 130, 135302 (2021);

A Picosun R-200 ALD system was employed to grow InN films using trimethyl indium, In(CH3)3 (TMI), and plasma discharged NH3/Ar gas mixture and an Aixtron/Epigress horizontal hot-wall MOCVD reactor was used to grow InN for comparison.

X-ray diffractograms of (a) symmetric 2θ-ω scan of InN films deposited on 4H-SiC (0001) by ALD and continuous CVD. The process temperatures of ALD are indicated, respectively, in the plot. The curves are plotted in the log scale and are shifted vertically for visual clarity. (b) ω scan of InN (0002) and SiC (0004) of samples deposited at different temperatures.

According to their study, 320 °C is found to be the upper temperature where the dynamics of the deposition chemistry can be controlled to involve only surface reactions with surface species. The results highlight the promising role of the ALD technique in realizing electronic devices based on nanometer-thin InN layers.

This study and previous findings in the literature demonstrate the importance of using a time-resolved precursor supply in CVD of InN in which the purge time plays an important role. It should also be noted that the best results in this study are outside the window where the deposition per ALD cycle is constant in temperature. Such observation suggests that a true, self-limiting ALD behavior is not the most critical factor but rather the dynamic precursor supply. Meanwhile, the experimentally optimal purge time and precursor pulse time should vary from reactor to reactor based on their geometry and volume.

Reference: On the dynamics in chemical vapor deposition of InN, Journal of Applied Physics 130, 135302 (2021);

Saturday, January 5, 2019

EuroCVD 22 & Baltic ALD 16 | 24-28 June 2019, Luxembourg Abstract submission deadline: 21 January 2019

The EuroCVD 22-Baltic ALD 16 Conference will take place in Luxembourg on 24-28 June 2019. The conference will offer a high quality scientific program with invited and contributed lectures in key development areas based on chemical processing from the gas phase.

The submission of contributions is open up to the 21st of January 2019.

Submit your abstract

Sunday, August 26, 2018

The Luxembourg Institute of Science and Technology (LIST) will organize the EuroCVD 22 - Baltic ALD 16 from 24 to 28 June 2019 in Luxembourg

The Luxembourg Institute of Science and Technology (LIST) will organize the EuroCVD 22 - Baltic ALD 16 from 24 to 28 June 2019 in Luxembourg. 

Chemical Vapor deposition (CVD) and Atomic Layer Deposition (ALD) are essential and versatile tools for the development of innovative materials and architectures that are the hart of modern nanotechnology. 

The conference subscribes within the biennial series of European CVD conferences, which started in Paris (1977), and the Baltic ALD series launched as Atomic Layer Epitaxy Symposium in Helsinki (1991). From the process and materials development perspectives, this conference will be a showcase of the forefront research addressing up-to-date challenges and stat-of-the-art chemical processing from the gas phase (CVD, ALD, Energy assisted CVD/ALD, MOVPE, RIE, ALE). The conference covers processes that are performed at atmospheric pressure, low vacuum and ultra-high vacuum, and processes that are assisted thermally or with other means such plasma, plasmon, light, electrical field, hot wire, … 

The EuroCVD 22 – Baltic ALD 16 will offer a high quality scientific program with invited and contributed lectures in key development areas based the chemical processing from the gas phase.
More details will be available soon.

Friday, June 16, 2017

Day 4 (Wednesday) EuroCVD-Baltic ALD 2017 in Linköping, Sweden

Here is a collection of tweets from Day 4 (Wednesday) EuroCVD-Baltic ALD 2017 in Linköping; Sweden.

Keep seeing these FABulous bags everywhere, must be the it-item of the season! (FAB Support sweden, Twitter)

ALD Lab Saxony, Cool Silicon e.v. participation and Exhibition at EuroCVD-Baltic ALD 2017 in Linköping, Sweden

ALD Lab Saxony  participated in the EuroCVD-Baltic ALD 2017 Conference in Linköping, Sweden 11th to 14th of June 2017. The ALD Lab Saxony members (IHM, TU Dresden), Fraunhofer ENAS and Fraunhofer IKTS) gave presentations and posters in the following fields:
  • Precursors (design, synthesis and delivery)
  • Process Equipment (reactors)
  • Nanomaterials (particles, 2D-materials, nano structures)
  • In-situ monitoring (QCM, Ellipsometry, IR, syncrotron)
  • Nitrides (semiconductors, conductors, hard coatings)
  • Carbides (hard coatings, semiconductors)
  • Elemental films (metals, amorphous carbon)
  • Emerging materials (hybrid MLD/ALD, sulfides)
ALD Lab Saxony also took active part in the exhibition with a joint table together with Colnatec the QCM Sensor company from Arizona USA and PillarHall(TM) team from VTT Finland presenting silicon wafers and chips that enable easy analysis of thin film conformality using well-defined, record-demanding microscopic 3-D structures.

Christoph Hossbach, now at Picosun Germany (a member of ALD Lab Saxony) taking the grand stage presenting on Area Selective ALD (Photo credit: Professor Henrik Pedersen, Twitter)

Marcel Junige (TU Dresden) presenting a poster on ALD Gold precursor candidates (photo credit: Marcel Junige)


Joint exhibition table with Colnatec USA (Wendy Jameson) and VTT Finland (Photo credit: Colin Georgi)

Fraunhofer IKTS (Jonas Sundqvist) presented via video link the latest developments on Hard coatings by CVD and ALD on WC Powder (Photo Credit Jonas Sundqvist)