Monday, May 25, 2020

AlixLabs ramps up activities and employs Dr. Mohammad Karimi as Principal Scientist

After successfully securing additional soft funding from VINOVA, AlixLabs AB ramps up activities in Lund, Sweden,  and employs Dr. Mohammad Karimi as Principal Scientist. Mohammad Karimi received his PhD in Physics from Lund University in 2020, where he worked on design, nano-fabrication and characterization of novel optoelectronic devices based on semiconductor nanowires. Dr. Karimi has authored and co-authored more than 20 journal publications and conference presentations in the field of solid-state physics and III-V semiconductor devices.

Mohammad Karimi Research Portal and publications at Lund University (LINK)

Dr. Mohammad Karimi as Principal Scientist, AlixLabs AB

Atomic Layer Etching for Nano Device Fabrication at AlixLabs

We provide an ALE-based method of manufacturing nanostructures with a characteristic size below 20 nm.

This is a new method of nanostructure fabrication using the atomic layer etching process, which is inherently a damage-free etch process. The recently discovered etching process selectivity to inclined surfaces, allows to use walls of tapered structures as a mask. The inclined surfaces can be readily fabricated by e.g. dry etching or epitaxial growth, and will provide masking during the atomic layer etching process.

The key Tool for ALE development - An Inductively coupled plasma reactive ion etching (ICP-RIE) system Apex SLR from Advanced Vacuum Systems AB. The system is designed for controlled nanoscale etching of Si, SiO2, Si3N4, W, Mo and polymers (resists) with fluorine-based chemistry. Unprotected surfaces of the following materials are not allowed: glasses, noble metals (Au, Ag, Pt, Cu, Pd), heavy metals (Cd, Pb, Zn) and certain types of polymers (e.g. silicones). In total, 8 process gases are presently available: SF6, CHF3, CF4, C4F8, Ar, O2, H2, N2. LINK

The inclined surfaces can be readily fabricated by e.g. dry etching or epitaxial growth, and will provide masking during the atomic layer etching process. This process therefore provides access to fabrication of extremely small structures in a very precise and efficient way.

AlixLabs is a user at Lund Nanlo Lab, Lund University, Sweden

Lund Nano Lab (LNL) is an open research facility that is available to both academic research groups, start-up and company users. Our world-class clean room facility is equipped with state-of-the-art semiconductor processing and metrology equipment.

  • ISO 5 and ISO 7 cleanroom facility for cutting edge nano- and micro-fabrication
  • 24/7 access for accredited academic research and company users
  • Fabrication and analysis of structures on the micro- and nanometer-scale
  • Wide range of equipment for Growth, Lithography, Deposition, Etch and Characterisation
  • Centre of excellence for Epitaxial growth of III-V materials
  • Industrial product development and prototype testing
  • Staffed by expert equipment and process experts available to provide user training

Lund Nano Lab is one of the main resources within NanoLund and provides support to research groups in strategically important areas of research such as:

  • Nanowire growth and material science
  • Fundamental and device physics, electronics and photonics
  • Nano-bio and life science
  • Exploratory nanotechnology
  • Growth and physics of new materials
  • Nanowire-based photovoltaics
  • Processing of nanoelectronic devices and circuits

No comments:

Post a Comment