Wednesday, April 8, 2015

An ultrafast rechargeable aluminium-ion battery [OPEN ACCESS]

Stanford University Professor Hongjie Dai and colleagues have developed the first high-performance aluminum battery that’s fast charging, long lasting and inexpensive. The flexible, non-flammable device produces 2 volts of electricity. The research team was able to generate 5 volts - enough to power a smartphone - using two aluminum batteries and a converter.


An ultrafast rechargeable aluminium-ion battery [OPEN ACCESS]

Meng-Chang Lin, Ming Gong, Bingan Lu, Yingpeng Wu, Di-Yan Wang, Mingyun Guan, Michael Angell, Changxin Chen, Jiang Yang, Bing-Joe Hwang & Hongjie Dai
Nature (2015), Published online 06 April 2015 doi:10.1038/nature14340

 

The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage1, 2. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity3. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration4, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1–0.2 volts6 or 1.8–0.8 volts7) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26–85 per cent over 100 cycles)4, 5, 6, 7. Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g–1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g–1 (equivalent to ~3,000 W kg–1), and to withstand more than 7,500 cycles without capacity decay.






3 comments:

  1. This web site is often a walk-through for all of the knowledge you wanted with this and didn’t know who to inquire about. Glimpse here, and you’ll definitely discover it. distributor stainless steel

    ReplyDelete
  2. Nice post. I understand some thing more difficult on diverse blogs everyday. It will always be stimulating you just read content from other writers and exercise a specific thing from their site. I’d would rather apply certain with all the content in this little blog no matter whether you don’t mind. Natually I’ll provide you with a link for your web weblog. Thank you for sharing. fence panel

    ReplyDelete
  3. I have been searching to find a comfort or effective procedure to complete this process and I think this is the most suitable way to do it effectively. Aluminium ramen

    ReplyDelete