Showing posts with label Apple. Show all posts
Showing posts with label Apple. Show all posts

Sunday, April 14, 2024

Apple Partners with Taiwanese Largan to Advance iPhone Camera Plastic Lenses Using ALD Technology - Updated

Apple has been replacing the glass lenses in future iPhone cameras with advanced plastic lenses that have successfully passed customer testing. Two years prior, Apple's supplier Largan invested heavily in ALD (Atomic Layer Deposition) deposition machines specifically for this purpose, costing over $13.9 million each. This investment paid off with significant business from the coating of lenses for the iPhone 15 series, which introduced a periscope lens in its Pro model—a first for iPhones.

Looking ahead, there's anticipation that these new plastic lenses might feature in the iPhone 16 or 17. Largan's chairman, Lin Enping, confirmed the successful testing of a new plastic film, though it remains uncertain if it will be ready for the next iPhone release. This transition to plastic could potentially enhance camera durability, particularly by reducing lens flare and protecting the lenses from damage in case of a fall.

Speculation abounds that Apple might be the customer Lin referred to, although he did not specify. Market analysts highlight that a move to plastic lenses would not only signify a significant technological shift but also align with Apple's ongoing innovation in camera technology.

Update: Apple has used plastic lenses up to and including the iPhone 15 line-up – with one exception. The tetraprism lens used in the iPhone 15 Pro Max is a glass-plastic hybrid known as 1G3P – that is, one glass element, three plastic. This is a compromise designed to bring some of the quality gain from a glass element, without the disadvantages of an all-glass design. Many of the elements in a lens are there purely to correct for various types of distortion. Using at least one glass element eliminates some of those distortions, allowing for fewer elements. Apple's Glass And Plastic Hybrid Lens In The iPhone 15 Pro Max Will Spark A Trend For The Competition To Follow (

The iPhone 16 Pro is tipped to receive the 5x optical zoom tetraprism lens currently available only on the largest iPhone 15 Pro Max model. This lens will bring Apple’s current most powerful zoom capabilities to the smaller of the two Pro models. However, according to another rumor from last year, the iPhone 16 Pro Max may pull ahead again with an even stronger “ultra-long” telephoto camera. New Apple Leak Reveals Major iPhone 16 Pro Camera Upgrade (

Largan Precision Co., Ltd., based in Taiwan, is a leading manufacturer of optical lens modules, primarily for smartphones and cameras. Renowned for supplying high-quality camera lenses for Apple's iPhone, Largan specializes in high-end lens modules. The company has invested heavily in advanced technologies such as atomic layer deposition (ALD) to enhance lens durability and image quality. Largan's significant production capacity and commitment to innovation make it a key player in the optics industry, pivotal in advancing smartphone camera technology. This role is critical for meeting the high demands of major smartphone manufacturers like Apple.

Source: Apple Seeks to replace Glass Lenses in Future iPhone Cameras with next-gen Plastic Lenses that have already passed customer testing - Patently Apple

Tuesday, October 31, 2023

Micron's Distinct Approach to DRAM and Apple Design Wins

The tech landscape has seen consistent advancements, especially with the D1β (D1b) DRAM generation. Micron's D1β LPDDR5 16 Gb DRAM chips, integrated into the Apple iPhone 15 Pro, represent a significant step forward. Codenamed Y52P die, this chip offers an improved form factor and density, especially when contrasted with its LPDDR5/5X D1α 16 Gb predecessor. The integration of these chips into Apple's flagship device marks a significant design win for Micron, emphasizing the trust and partnership between the two tech giants.

In a recent teardown of the Apple iPhone 15 Pro, TechInsights has discovered a remarkable find - Micron's cutting-edge D1β LPDDR5 DRAM chips. These chips mark the industry's first foray into the D1β generation, and they are nothing short of impressive. (LINK)

Micron's technological direction is unique, especially with their decision to forego the Extreme Ultraviolet Lithography (EUVL) process, common in sub-15nm DRAM scaling. This stands in contrast to industry giants like Samsung and SK Hynix, who employ EUVL in their DRAM fabrication. Despite this, Micron has successfully launched the D1z, D1α, and D1β DRAM chips without EUVL, illustrating an alternative yet effective DRAM scaling approach.

In wrapping up, while Samsung and SK Hynix utilize EUVL in their DRAM processes, Micron has carved a different path, further solidified by their design wins with Apple. This partnership not only underscores Micron's technological prowess but also indicates the potential of varied methodologies in shaping the future of DRAM technology.

Source: Micron's D1β LPDDR5 Chip: Great Advancements in Memory Technology | Semiconductor Materials and Equipment (

Tuesday, September 26, 2023

TechInsights Discovers Micron's Cutting-Edge D1β LPDDR5 16 Gb DRAM Chips in Apple iPhone 15 Pro: Setting a New Standard in Memory Technology

TechInsights has confirmed Micron's cutting-edge D1β LPDDR5 16 Gb DRAM chips in the Apple iPhone 15 Pro, marking the industry's first venture into the D1β generation. These chips are smaller and denser than their predecessors, showcasing significant advancements in DRAM technology. Notably, Micron has achieved this without utilizing Extreme Ultraviolet Lithography (EUVL), a technique employed by competitors like Samsung and SK Hynix for their DRAM processes. This achievement highlights Micron's dedication to pushing the boundaries of DRAM technology, emphasizing innovation and efficiency in the tech landscape. Micron's groundbreaking D1β LPDDR5 16 Gb DRAM chip promises to reshape the future of memory technology, setting a new standard for the industry.


1-BETA includes cool stuff

High-k/Metal Gate

Micron's 1β fabrication process uses the company's 2nd generation high-K metal gate (HKMG) and is said to increase bit density of a 16Gb memory die by 35% as well as to improve power efficiency by 15% when compared to a similar DRAM device made on the company's 1α node

Pitch multiplication without the need for EUV Lithography

Micron's use of proprietary multi-patterning lithography involves advanced techniques for defining circuit patterns on semiconductor wafers with the highest precision. This approach allows Micron to create intricate patterns on the chips, achieving higher memory capacity in a smaller footprint. It enables the company to fit billions of memory cells on a chip that's roughly the size of a fingernail. 

While the semiconductor industry has been transitioning to extreme ultraviolet lithography (EUVL) to overcome technical challenges in patterning, Micron has opted for its multi-patterning lithography approach. This choice showcases Micron's expertise and innovation in lithography techniques, enabling them to continue shrinking circuit features and achieving greater memory capacity without relying on EUVL, which is still considered an emergent technology. 

By using proprietary multi-patterning lithography, Micron not only reduces the cost per bit of data but also enables devices with small form factors, such as smartphones and IoT devices, to incorporate more memory into compact spaces. This approach underscores Micron's commitment to staying at the forefront of memory technology innovation.
"While the industry has begun to shift to a new tool that uses extreme ultraviolet light to overcome these technical challenges, Micron has tapped into its proven leading-edge nano-manufacturing and lithography prowess to bypass this still emergent technology. Doing so involves applying the company’s proprietary, advanced multi-patterning techniques and immersion capabilities to pattern these minuscule features with the highest precision," Micron explains. Thy Tran, VP Process Integration, Micron

On the heels of the news that Micron has begun shipping QS-sample LPDDR5X components developed on the new 1-beta DRAM process node to its smartphone customers, host Jim Greene welcomes Thy Tran, Vice President of DRAM Process Integration, to the Chips Out Loud Podcast to discuss the emergent technology.


Micron LPDDR5 16 Gb Non-EUVL Chip Found in Apple iPhone 15 Pro | TechInsights

LPDRAM | LPDDR | Micron Technology

Micron Ships World’s Most Advanced DRAM Technology With 1-Beta Node | Micron Technology