Wednesday, December 20, 2023

Enhancing Thin Film Deposition with Plasma-Activated Water: A Novel Approach in Atomic Layer Deposition

The research article "Novel Energetic Co-Reactant for Thermal Oxide Atomic Layer Deposition: The Impact of Plasma-Activated Water on Al2O3 Film Growth" presents a groundbreaking study on the use of plasma-activated water (PAW) in the atomic layer deposition (ALD) of Al2O3 thin films. This study offers significant insights into the potential advantages of using PAW over traditional water in thin film deposition processes.

One of the key findings of this research is the enhanced Growth Per Cycle (GPC) when using PAW as a co-reactant. The study found that PAW led to an increase in GPC of up to 16.4% compared to deionized (DI) water. This enhancement is attributed to the reactive oxygen species present in PAW, such as H2O2 and O3, which are believed to activate substrate sites more effectively, thereby improving both the GPC and the overall quality of the films.

The study also delves into the chemical reactivity of PAW, noting significant changes in its physicochemical properties upon activation. These changes include a decrease in pH, indicating increased acidity, as well as increases in oxidation-reduction potential (ORP), conductivity, and total dissolved solids (TDS). Additionally, the concentration of reactive species like H2O2, NO2−, NO3−, HNO2, and O3 was found to be higher in PAW.

The improved film quality achieved with PAW is another highlight of the study. Films grown using PAW, especially with PAW at a pH of 3.1, displayed a near-stoichiometric O/Al ratio, reduced carbon content, and an expanded bandgap. These characteristics are indicative of a superior film quality compared to those grown using DI water.

Furthermore, the study suggests that a comprehensive understanding of PAW's role in ALD necessitates further investigations. These investigations should explore different temperatures, metal precursors, and PAWs generated by alternate non-thermal plasmas.

The term “PAW-ALD” has been proposed to describe this enhanced variant of the ALD process that incorporates plasma-activated water. This new descriptor highlights the unique approach and potential benefits of using PAW in thin film deposition processes.

Finally, the potential applications of this research are significant. The use of PAW in ALD could mirror the gains observed in plasma-enhanced atomic layer deposition (PEALD) processes that use oxygen plasma, indicating its potential industrial relevance.


Nanomaterials 202313(24), 3110;

Nanomaterials | Free Full-Text | Novel Energetic Co-Reactant for Thermal Oxide Atomic Layer Deposition: The Impact of Plasma-Activated Water on Al2O3 Film Growth (

1 comment:

  1. In today's fast-paced world, bandle provides a welcome escape, offering a relaxing yet stimulating gaming experience that can help alleviate stress and promote mindfulness.