InN holds promise in semiconductor and electronics applications due to its distinctive properties. It boasts a high electron mobility, exceeding that of many other III-nitride materials, rendering it suitable for high-frequency electronic devices like transistors and amplifiers. With a narrow bandgap of around 0.7 eV, InN finds applications in infrared photodetectors and optoelectronic devices. Despite challenges in thermal stability during deposition, it exhibits good stability when appropriately processed, making it valuable in high-temperature electronics. Its high electron velocity enhances the performance of high-speed field-effect transistors. InN also shows potential in energy-efficient electronics and gas sensing applications, furthering its significance in the semiconductor and electronics industry.
Researchers used quantum-chemical density functional theory calculations to investigate the adsorption process of ammonia (NH3) on both GaN and InN surfaces. They aimed to understand if differences in this process could explain why thermal ALD of InN is challenging. Their findings revealed a similar reactive adsorption mechanism on both materials, where NH3 adsorbs onto vacant sites created by the desorption of methyl groups from the surfaces. However, the energy barrier for this adsorption process was significantly higher on InN compared to GaN, indicating that the process is much slower on InN.
This slow kinetics would hinder NH3 from effectively adsorbing onto InN during the ALD growth process, making thermal ALD with InN using NH3 impractical. As a result, the only alternative to a fully thermal ALD process for InN appears to be using a different precursor system due to InN's thermal instability.
No comments:
Post a Comment