Showing posts with label sweden. Show all posts
Showing posts with label sweden. Show all posts

Thursday, November 2, 2023

Atlas Copco to Bolster Semiconductor Portfolio with Acquisition of South Korean Vacuum Valve Company, Presys Co., Ltd.

  • Atlas Copco set to acquire South Korean vacuum valve producer, Presys Co., Ltd.
  • Presys reported a revenue of MKRW 35,000 in 2022 and has a workforce of 134.
  • The deal, pending regulatory approval, is anticipated to close in Q1 2024.
Swedish firm Atlas Copco has announced its intention to purchase Presys Co., Ltd, a South Korean manufacturer of vacuum valves primarily for the semiconductor sector. Located in Suwon, Presys reported 2022 revenues of MKRW 35,000 (equivalent to SEK 275 million). Geert Follens, the Business Area President of Vacuum Technique at Atlas Copco, highlighted that Presys' offerings will enhance their existing semiconductor product range. Although the transaction amount remains undisclosed, it awaits regulatory nods and is slated for completion by early 2024. Upon finalization, Presys will be integrated into Atlas Copco's Semiconductor Chamber Solutions Division within the Vacuum Technique Business Area.


Presys customers, with focus on Asia.

Sources: 

Monday, May 25, 2020

AlixLabs ramps up activities and employs Dr. Mohammad Karimi as Principal Scientist

After successfully securing additional soft funding from VINOVA, AlixLabs AB ramps up activities in Lund, Sweden,  and employs Dr. Mohammad Karimi as Principal Scientist. Mohammad Karimi received his PhD in Physics from Lund University in 2020, where he worked on design, nano-fabrication and characterization of novel optoelectronic devices based on semiconductor nanowires. Dr. Karimi has authored and co-authored more than 20 journal publications and conference presentations in the field of solid-state physics and III-V semiconductor devices.

Mohammad Karimi Research Portal and publications at Lund University (LINK)

Dr. Mohammad Karimi as Principal Scientist, AlixLabs AB

Atomic Layer Etching for Nano Device Fabrication at AlixLabs

We provide an ALE-based method of manufacturing nanostructures with a characteristic size below 20 nm.

This is a new method of nanostructure fabrication using the atomic layer etching process, which is inherently a damage-free etch process. The recently discovered etching process selectivity to inclined surfaces, allows to use walls of tapered structures as a mask. The inclined surfaces can be readily fabricated by e.g. dry etching or epitaxial growth, and will provide masking during the atomic layer etching process.

The key Tool for ALE development - An Inductively coupled plasma reactive ion etching (ICP-RIE) system Apex SLR from Advanced Vacuum Systems AB. The system is designed for controlled nanoscale etching of Si, SiO2, Si3N4, W, Mo and polymers (resists) with fluorine-based chemistry. Unprotected surfaces of the following materials are not allowed: glasses, noble metals (Au, Ag, Pt, Cu, Pd), heavy metals (Cd, Pb, Zn) and certain types of polymers (e.g. silicones). In total, 8 process gases are presently available: SF6, CHF3, CF4, C4F8, Ar, O2, H2, N2. LINK

The inclined surfaces can be readily fabricated by e.g. dry etching or epitaxial growth, and will provide masking during the atomic layer etching process. This process therefore provides access to fabrication of extremely small structures in a very precise and efficient way.

AlixLabs is a user at Lund Nanlo Lab, Lund University, Sweden

Lund Nano Lab (LNL) is an open research facility that is available to both academic research groups, start-up and company users. Our world-class clean room facility is equipped with state-of-the-art semiconductor processing and metrology equipment.

  • ISO 5 and ISO 7 cleanroom facility for cutting edge nano- and micro-fabrication
  • 24/7 access for accredited academic research and company users
  • Fabrication and analysis of structures on the micro- and nanometer-scale
  • Wide range of equipment for Growth, Lithography, Deposition, Etch and Characterisation
  • Centre of excellence for Epitaxial growth of III-V materials
  • Industrial product development and prototype testing
  • Staffed by expert equipment and process experts available to provide user training

Lund Nano Lab is one of the main resources within NanoLund and provides support to research groups in strategically important areas of research such as:

  • Nanowire growth and material science
  • Fundamental and device physics, electronics and photonics
  • Nano-bio and life science
  • Exploratory nanotechnology
  • Growth and physics of new materials
  • Nanowire-based photovoltaics
  • Processing of nanoelectronic devices and circuits