Saturday, September 8, 2018

Veeco present ALD coating that reduces failure in orthopedic implants

At the EFDS ALD For Industry Workshop in Dresden this spring Ganesh Sundaram Veeco presented on their recent developments employing ALD in Life Sciences [LINK]. One of the topics presented in hos presentation was how an ALD coating can reduce failure in orthopedic implants. Here is a recent article describing these studies in details that is well worth reading along with the scientific publications.

Typical titanium implant (Wikipedia) in Osteosynthesis, which is the operative treatment of bone fractures, mainly with metal nails, plates and screws.

Atomic Layer Deposition Coating Reduces Failure in Orthopedic Implants

Written by Luting Liu, Ritwik Bhatia, Thomas J. Webster
Novus Light Technologies Today

LINK: https://www.novuslight.com/atomic-layer-deposition-coating-reduces-failure-in-orthopedic-implants_N8392.html

Introduction:

Titanium (Ti) and its alloys have been extensively used as implant materials in orthopedic applications. However, implants may fail due to a lack of osseointegration and/or infection. Researchers endowed an implant surface with favorable biological properties by the dual modification of surface chemistry and nanostructured topography. The application of a nanostructured titanium dioxide (TiO2) coating on Ti-based implants is proposed to enhance tissue-implant interactions while inhibiting bacterial colonization simultaneously due to its chemical stability, biocompatibility, and antimicrobial properties.

Temperature-controlled atomic layer deposition (ALD) was found to provide an effective strategy to produce TiO2 coatings with delicate control of surface nano-topography and surface energy to enhance the interfacial biocompatibility and mitigate bacterial infection.



Ganesh Sundaram Veeco presenting recent developments employing ALD in Life Sciences at EFDS ALD For Industry in Dresden 2018 (Photo Dr. Martin Knaut).

Original publication [Open access]: Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants, Liu L, Bhatia R, Webster TJ, International journal of nanomedicine 8 December 2017 Volume 2017:12 Pages 8711—8723 DOI https://doi.org/10.2147/IJN.S148065