Tuesday, August 8, 2017

New promising ALD catalyst for CO2 splitting

Scientists from École polytechnique fédérale de Lausanne (EPFL) in Switzerland has reported a low cost system to split carbon dioxide to carbon monoxide and oxygen using an ALD tin oxide catalyst on copper oxide nanowires. The devis is working at a rather efficiency of 13.4%, which opens up new paths to get rid of the man made CO2 that is currently heating up our planet and causing extreme weather conditions everywhere  - believe it or not.
The research comes out of the famous laboratory of Prof. Michael Grätzel at EPFL, one of the worlds top 10 most cited chemists and most certainly the most cited chemist from Dorfchemnitz in Saxony, Germany. One of his most famous invention is the so called Gräzel cell - a dye-sensitized solar cell, which is a low-cost version of thin film solar cells and he was awarded the 2010 Millennium Technology Prize for this invention.
Michael Grätzel (born 11 May 1944, in Dorfchemnitz, Saxony, Germany) is a professor at the École Polytechnique Fédérale de Lausanne where he directs the Laboratory of Photonics and Interfaces [Wikipedia].
Using Earth-abundant materials, EPFL scientists have built the first low-cost system for splitting CO2 into CO, a reaction necessary for turning renewable energy into fuel.

The future of clean energy depends on our ability to efficiently store energy from renewable sources and use it later. A popular way to do this is to electrolyze carbon dioxide to carbon monoxide, which is then mixed with hydrogen to produce liquid hydrocarbons like gasoline or kerosene that can be used as fuel. However, we currently lack efficient and Earth-abundant catalysts for the initial splitting of CO2 into CO and oxygen, which makes the move into expensive and prohibitive. EPFL scientists have now developed an Earth-abundant catalyst based on copper-oxide nanowires modified with . The system can split CO2 with an efficiency of 13.4%. The work is published in Nature Energy, and can help worldwide efforts to synthetically produce carbon-based fuels from CO2 and water.

Read more at: https://phys.org/news/2017-06-low-cost-carbon-dioxide.html#jCpv
Using Earth-abundant materials, EPFL scientists have built the first low-cost system for splitting CO2 into CO, a reaction necessary for turning renewable energy into fuel.

The future of clean energy depends on our ability to efficiently store energy from renewable sources and use it later. A popular way to do this is to electrolyze carbon dioxide to carbon monoxide, which is then mixed with hydrogen to produce liquid hydrocarbons like gasoline or kerosene that can be used as fuel. However, we currently lack efficient and Earth-abundant catalysts for the initial splitting of CO2 into CO and oxygen, which makes the move into expensive and prohibitive. EPFL scientists have now developed an Earth-abundant catalyst based on copper-oxide nanowires modified with . The system can split CO2 with an efficiency of 13.4%. The work is published in Nature Energy, and can help worldwide efforts to synthetically produce carbon-based fuels from CO2 and water.

Read more at: https://phys.org/news/2017-06-low-cost-carbon-dioxide.html#jCp
Using Earth-abundant materials, EPFL scientists have built the first low-cost system for splitting CO2 into CO, a reaction necessary for turning renewable energy into fuel.

The future of clean energy depends on our ability to efficiently store energy from renewable sources and use it later. A popular way to do this is to electrolyze carbon dioxide to carbon monoxide, which is then mixed with hydrogen to produce liquid hydrocarbons like gasoline or kerosene that can be used as fuel. However, we currently lack efficient and Earth-abundant catalysts for the initial splitting of CO2 into CO and oxygen, which makes the move into expensive and prohibitive. EPFL scientists have now developed an Earth-abundant catalyst based on copper-oxide nanowires modified with . The system can split CO2 with an efficiency of 13.4%. The work is published in Nature Energy, and can help worldwide efforts to synthetically produce carbon-based fuels from CO2 and water.

Read more at: https://phys.org/news/2017-06-low-cost-carbon-dioxide.html#jCp
Using Earth-abundant materials, EPFL scientists have built the first low-cost system for splitting CO2 into CO, a reaction necessary for turning renewable energy into fuel.

The future of clean energy depends on our ability to efficiently store energy from renewable sources and use it later. A popular way to do this is to electrolyze carbon dioxide to carbon monoxide, which is then mixed with hydrogen to produce liquid hydrocarbons like gasoline or kerosene that can be used as fuel. However, we currently lack efficient and Earth-abundant catalysts for the initial splitting of CO2 into CO and oxygen, which makes the move into expensive and prohibitive. EPFL scientists have now developed an Earth-abundant catalyst based on copper-oxide nanowires modified with . The system can split CO2 with an efficiency of 13.4%. The work is published in Nature Energy, and can help worldwide efforts to synthetically produce carbon-based fuels from CO2 and water.

Read more at: https://phys.org/news/2017-06-low-cost-carbon-dioxide.html#jCp
Using Earth-abundant materials, EPFL scientists have built the first low-cost system for splitting CO2 into CO, a reaction necessary for turning renewable energy into fuel.

The future of clean energy depends on our ability to efficiently store energy from renewable sources and use it later. A popular way to do this is to electrolyze carbon dioxide to carbon monoxide, which is then mixed with hydrogen to produce liquid hydrocarbons like gasoline or kerosene that can be used as fuel. However, we currently lack efficient and Earth-abundant catalysts for the initial splitting of CO2 into CO and oxygen, which makes the move into expensive and prohibitive. EPFL scientists have now developed an Earth-abundant catalyst based on copper-oxide nanowires modified with . The system can split CO2 with an efficiency of 13.4%. The work is published in Nature Energy, and can help worldwide efforts to synthetically produce carbon-based fuels from CO2 and water.

Read more at: https://phys.org/news/2017-06-low-cost-carbon-dioxide.html#jCp

Below the abstract and the link to the Nature Energy publication

Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO


Marcel Schreier, Florent Héroguel, Ludmilla Steier, Shahzada Ahmad, Jeremy S. Luterbacher, Matthew T. Mayer, Jingshan Luo & Michael Grätzel

Nature Energy 2, Article number: 17087 (2017) doi:10.1038/nenergy.2017.87

Abstract: The solar-driven electrochemical reduction of CO2 to fuels and chemicals provides a promising way for closing the anthropogenic carbon cycle. However, the lack of selective and Earth-abundant catalysts able to achieve the desired transformation reactions in an aqueous matrix presents a substantial impediment as of today. Here we introduce atomic layer deposition of SnO2 on CuO nanowires as a means for changing the wide product distribution of CuO-derived CO2 reduction electrocatalysts to yield predominantly CO. The activity of this catalyst towards oxygen evolution enables us to use it both as the cathode and anode for complete CO2 electrolysis. In the resulting device, the electrodes are separated by a bipolar membrane, allowing each half-reaction to run in its optimal electrolyte environment. Using a GaInP/GaInAs/Ge photovoltaic we achieve the solar-driven splitting of CO2 into CO and oxygen with a bifunctional, sustainable and all Earth-abundant system at an efficiency of 13.4%

No comments:

Post a Comment