Friday, August 20, 2021

Forge Nano and Mineral Commodities Enter Into MOU to Produce ALD-Coated Natural Graphite Anode Powders

[News Forge Nano, LINK] Forge Nano, a global leader in surface engineering and precision nano-coating technology, is proud to announce the successful launch of high-energy, Lithium-ion (Li-ion) batteries into orbit aboard the SpaceX Transporter-2 rideshare mission on June 20, 2021. The Li-ion batteries, featuring Forge Nano Particle ALD (PALD) technology and Enersys Zero Volt™ technology, were integrated into Spire Global®, Inc.’s LEMUR-2 satellite. The batteries used 100 percent domestically sourced electrode materials from Pyrotek® and Forge Nano®.


Lemur satellites in the Clean Room (image credit: Spire Global)

Paul Lichty, CEO of Forge Nano, explains “This is the first ALD-enabled space battery we know of and it’s mostly made with US materials! As world leaders in battery materials, we’re excited to be pushing limits of performance for various applications including space. This partnership with EnerSys, Pyrotek, and Spire Global is just one of many commercial battery projects we’re working on, and we look forward to sharing these other projects with the world soon.”

Forge Nano’s Particle Atomic Layer Deposition (PALD) technology, developed by Forge Nano founders while at the University of Colorado Boulder, allows batteries to survive longer and perform better across a variety of metrics. PALD is applicable and cost-effective for most cathodes, anodes, separators, and solid-state battery materials. Forge Nano works with companies from across the globe to enhance their materials with PALD.

The battery cells sent to space incorporated domestically sourced anode material from Pyrotek, headquartered in Spokane, Washington, and cathode material from Forge Nano. Both electrode materials utilized Forge Nano’s Particle Atomic Layer Deposition (PALD) coatings and combined with EnerSys® ZeroVolt™ technology to enhance cycle life stability, energy density, and low temperature performance. The batteries were sent to space aboard a Spire Global®, Inc. LEMUR-2 satellite and will be electrically cycled in-orbit at specific Depth of Discharge (DOD) levels to determine their electrical performance in a space environment as part of the battery qualification process.

“By integrating the various parties’ technologies into Spire’s LEMUR-2 satellite, we are able to gather relevant performance data in a spaceflight application and advance the use of this technology more broadly within the space industry.” said Keith E. Johnson, Vice President and General Manager, Federal at Spire Global, Inc.

“These new US-made batteries pave the way for a fully integrated US battery supply chain at a critical time in the domestication of the battery industry,” said Mark Matthews, EnerSys Senior Vice President, Specialty – Global.

Thursday, August 19, 2021

Forge Nano and Mineral Commodities Enter Into MOU to Produce ALD-Coated Natural Graphite Anode Powders

DENVER, Aug. 19, 2021 [LINK] - Mineral Commodities Ltd., Perth l, WA, Australia, and Forge Nano Inc., Colorado, USA have signed a memorandum of understanding ("MOU") for the use of Forge Nano's proprietary Atomic Layer Deposition coating technology ("ALD"). Forge Nano's surface engineering platform technology will be used to apply atomic level coatings to Mineral Commodities' natural graphite materials.



Dr. Surinder Ghag, MRC's Chief Technology Officer, explains: "By combining our high-quality natural graphite with Forge Nano's ALD coating technology, we can produce a high-performing, cost-competitive graphite anode powder for lithium-ion batteries. We're very excited about this long-term partnership as we target sustainable European anode production in the coming years. This collaboration enables the Company to continue building its technical expertise as it moves towards demonstrating a downstream process for graphite spheronization, purification and coating."

Paul Lichty, Forge Nano's Chief Executive Officer, adds: "We are excited to be fully supporting Mineral Commodities as a key technology partner in their path towards large-scale anode powder production. Our high-throughput ALD coating technology will enable them to compete with established anode producers globally. The collaboration adds to our growing set of partnerships in the graphite anode space, a testament to the value of our technology."

Why does the ALD coating process work so well for graphite anode powders?

ALD coatings on graphite anode powder stabilize the surface defects. This ALD stabilization results in better anode powders with higher discharge capacities, longer life, and improved rate performance. Batteries using ALD-stabilized graphite show increased cycle life, reduced capacity fade, increased conductivity, and greater stability under a variety of conditions such as high voltage, fast charge, or high/low temperature storage and operation. Additionally, Atomic Layer Deposition (ALD) is a potential replacement for carbon coatings on natural graphite powders, a process that few companies have the know-how for.