Showing posts with label Lithium ion battery. Show all posts
Showing posts with label Lithium ion battery. Show all posts

Wednesday, December 11, 2019

Argonne National Laboratory Installs Forge Nano’s Prometheus ALD tool to enable next gen ALD research and innovation.

[Press release, Forge Nano, LINK] LOUISVILLE, CO., October 2019 — Delivery and installation of Forge Nano’s industry leading, lab-scale ALD tool- Prometheus has been completed.

Forge Nano’s Prometheus tool is a lab-scale R&D tool designed to make ALD research approachable and affordable. The Prometheus series of ALD tools have been designed to be the world’s most robust, flexible, and economical ALD tools available. Designed with the lab environment in mind, applying nanoscale encapsulating coatings on milligrams to kilograms of powders has never been more attainable. It can also be used to coat small objects.

The Prometheus system accommodates up to 8 precursors, including basic delivery and low vapor pressure delivery draw systems to handle gas, liquid, and solid precursor recipes with ease. (www.foregnano.com)

Wednesday, December 4, 2019

High-performance lithium-ion battery materials with Picosun ALD

ESPOO, Finland, 3rd December 2019 – Picosun Group, the provider of AGILE ALD® (Atomic Layer Deposition) thin film coating technology for global industries, reports excellent results achieved with ALD in the manufacturing of lithium ionthin film battery materials.

Solid-state Li-ion thin film batteries (SSLIBs) are small, compact and may have flexible construction. They don’t contain any aggressive liquid substances, so they are safe to use. Furthermore, SSLIBs possess excellent energy storage capacity, which is why they are regarded as ideal power sources for electric cars, laptops, tablets and smartphones, wireless sensors, implantable and wearable medical devices, and harvesting devices for renewable energy sources. The impact of Li-ion battery technology on our modern society, permeated by portable electronics, wireless data transfer and mobile communications, is so huge that it earned its developers, Dr. John B. Goodenough, Dr. M. Stanley Whittingham, and Dr. Akira Yoshino, the Nobel chemistry prize this year.

As the performance requirements of these devices increase, functional characteristics of their power sources should be improved as well. Transition from planar, 2D battery geometry to corrugated 3D one with much higher active surface area for energy storage could augment the energy and power density of SSLIB. However, finding a suitable method for depositing the functional material layers on the complex microscale structures of the 3D batteries poses another challenge.
 


Diagram of a conventional 2D all-solid-state thin-film Li-ion battery structure (a), its SEM section view (b), and advantages of the 3D battery structure. Image source: Yue et. al., Fabrication of Si-based three-dimensional microbatteries: A review, in Frontiers of Mechanical Engineering 2017 (doi: 10.1007/s11465-017-0462-x).

Picosun’s ALD technology has now been successfully used to fabricate high-quality, high-performance thin film NiO anodes for SSLIBs. Compared to graphite, which is widely used to produce anodes of lithium-ion batteries, deposited NiO films had more than twice as large capacity and more than three times as high density (*). The surpassing characteristics of NiO potentially allow improvement of the energy density of SSLIBs.

In addition to high quality and performance of the ALD NiO anodes, ALD’s unmatched capability to produce conformal and uniform coatings with excellent purity and repeatability inside challenging microscale architectures such as high aspect ratio trenches makes it an ideal method for 3D SSLIB materials manufacturing. Also, the ALD processes for several other anode materials such as SnO2, CoO, and MnO are well-known and thoroughly studied.

“We are very pleased with the PICOSUN® ALD system at our facilities, and all the support and consultancy we have received from Picosun over the years. With our ALD system we have been able to deposit dense, uniform ALD NiO films with low roughness and very high capacity. The excellent qualities of these films allowed us to develop high-performance anodes for SSLIBs,” says Picosun customer, Dr. Maxim Maximov from Peter the Great St.Petersburg Polytechnic University (SPbPU), Russia.

“Battery applications are yet one example of ALD’s flexibility as a method, and how new industries discover the possibilities of ALD day by day. Deep trenches with aspect ratios exceeding 1:2500 have been successfully coated with our ALD tools equipped with our patented Picoflow™ feature, which further advocates the use of our technology in 3D solid state Li-ion battery manufacturing. We are happy that our ALD solutions can be potentially utilized in future’s energy storage solutions in conjunction with clean energy production, and to power more compact healthcare devices, to improve people’s quality of life,” states Dr. Jani Kivioja, CTO of Picosun Group.

Picosun provides the most advanced ALD thin film coating technology to enable the industrial leap into the future, with turn-key production solutions and unmatched expertise in the field. Today, PICOSUN® ALD equipment are in daily manufacturing use in numerous major industries around the world. Picosun is based in Finland, with subsidiaries in Germany, North America, Singapore, Taiwan, China and Japan, offices in India and France, and a world-wide sales and support network. Visit www.picosun.com.

(*) Yury Koshtyal et. al., Atomic Layer Deposition of NiO to Produce Active Material for Thin-Film Lithium-Ion Batteries, Coatings 2019, 9, 301; doi:10.3390/coatings9050301. Open access: https://www.mdpi.com/2079-6412/9/5/301

For more information about the application of ALD in Li-ion batteries, please visit Dr. Maxim Maximov’s profile at https://www.researchgate.net/profile/Maxim_Yu_Maximov.

Thursday, October 17, 2019

The Nobel Prize in Chemistry 2019 - A highly competitive breeding ground for new IP

The motivation for this year's Nobel Prize in chemistry reads "for the development of lithium-ion batteries". John B. Goodenough (The University of Texas at Austin, USA), M. Stanley Whittingham (Binghamton University, State University of New York, USA) and Akira Yoshino (Asahi Kasei Corporation, Tokyo, Japan and Meijo University, Nagoya, Japan) receive the award as well as SEK 3 million each.

The basis for the lithium-ion battery was laid during the oil crisis in the 1970s. Lithium-ion batteries are light, rechargeable, and powerful batteries that are used in everything from mobile phones to laptops and electric vehicles (EVs). The lithium battery cells can also be deployed in systems to store vast amounts of energy produced by solar and wind power, which enables a fossil-free society.
The battery technology that has conquered the world

Since the first lithium-ion batteries came on the market in 1991, they have entirely changed the existence throughout the world. They have laid the foundation for a wireless and fossil-free society, and are today of enormous benefit to humanity. If we look at the lithium-ion battery from a technical and innovative perspective and link the technology area to patents, we see an explosive increase in patent applications between the years 2008-2017, a period when battery technology has penetrated the world market. Some of the large companies that have been inspired by the Nobel Prize winners and their technical achievements are: Tesla (USA), Toyota (Japan), Volkswagen (Germany), BASF (Germany), Umicore (Belgium), CATL (China) and Northvolt (Sweden), which is currently establishing itself in northern Sweden. These are companies active across the complete value chain, from raw materials suppliers, battery cell production to end-user consumer applications.

A minefield for new patent applications

The companies and innovators who are now entering the lithium-ion technology business and are considering applying for patents, no matter what application area they intend to work in, are entering a veritable minefield. It is an extremely challenging area for new patent applications. The situation places high demands on qualified analysis of both the main technology area, adjoining technology areas, market situations, the actions of existing players and new players' strategies. Here, adequate patent information in the hands of an expert in patent information can straighten out many question marks, not least because the patent data consists of both technical, legal, and business-related information.

To see what the others do not see

When I, as an expert in seeking, analyzing, and drawing conclusions from patent information, launches, both the historical, the current, and the future perspectives, are at stake. Drawing conclusions from historical patent data and translating it into future potential is an unusual ability that not many commands.

The amount of patent data, the variety of data, and the speed at which new patent data is published are continuously increasing. Properly handled and, above all, adequately analyzed, patent data can increase insights, support business decisions, and create new values and stronger negotiating positions for your company. I think it is a waste not to use the power of patent data more than is done today.

Contact me so we take a closer look at a technology area that is important to your company's future.

Ervin Dubaric


Guest Blog by Dr. Ervin Dubaric, Patent Information Specialist at Bergenstråhle & Partners, Stockholm, Sweden

Tuesday, September 10, 2019

LG Technology Ventures & Mitsui Kinzoku-SBI Material Innovation Fund Join Forge Nano Inc. Series A

LOUISVILLE, Colo., Sept. 5, 2019 /PRNewswire/ -- Mitsui Kinzoku-SBI Material Innovation Fund and LG Technology Ventures join in Forge Nano's Series A, bringing the total investment to date to $18M, up from Volkswagen's initial $10M investment announced in January 2019.

The investment will help to accelerate advanced materials for new battery technologies while also broadening applications for atomic-level nano-coatings into a diverse set of new markets. Forge Nano's technology paves the way for entirely new applications for nanoscale surface engineering. Atomic layer deposition (ALD) is an ultra-thin film deposition process that allows precision coatings that are the thickness of one atom to be deposited one layer at a time onto a surface. Forge Nano's ALD enabled core-shell battery materials have been demonstrated to improve the energy density, charge rate, cycle life, and safety of lithium-ion batteries as well as to enable next generation battery technologies.

Beyond batteries, ALD nano-coatings are enabling the next era of higher performance materials for catalysts, 3D printing, thermal fillers, separations and an array of other new market applications. Virtually any application using industrial powders that benefit from tuned surface properties but require precise, uniform and conformal coatings that are chemically bonded to the surface can now use ALD nano-coatings to unlock the next level of performance and value.

"Forge's proprietary nano-coating technology and high-throughput manufacturing processes will open the door for a new stage of high performance materials. A collaboration between Forge Nano and Mitsui Kinzoku will accelerate the production of high performance materials and provide our customers high value products in various market."
-Mitsui Kinzoku-SBI Material Innovation Fund

About Mitsui Kinzoku-SBI Material Innovation Fund: Mitsui Kinzoku-SBI Material Innovation Fund was jointly established in 2017 by Mitsui Kinzoku and SBI Investment. Its investment target is start-up companies with material technologies, material manufacturing and processing know-how which are each likely to generate a business synergy effect with Mitsui Kinzoku's business.

About LG Technology Ventures: LG Technology Ventures was established in 2018 and is the venture capital investment arm of the LG Group of South Korea. The LG Technology Ventures team consists of experienced investors, entrepreneurs, technologists, and industry domain experts. Currently, LG Technology Ventures is managing over $400 million of fund assets and invests in early-stage information technology, automotive, manufacturing, life-sciences, energy, and advanced materials companies.

About Forge Nano: Based in Louisville, Colo., Forge Nano is a global leader in surface engineering and precision nano-coating technology. Forge Nano's proprietary technology and manufacturing processes make angstrom-thick coatings fast, affordable and commercially viable for a wide range of materials, applications and industries. Forge Nano's suite of ALD products and services covers the full spectrum from lab-scale to pilot and commercial-scale manufacturing systems. For more information visit www.ForgeNano.com

Tuesday, August 27, 2019

New coating paves the way for low weight lithium metal batteries

A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes

Zhiao Yu, David G. Mackanic, Wesley Michaels, Jian Qin, Yi Cui, Zhenan Bao
Published:August 26, 2019 DOI:https://doi.org/10.1016/j.joule.2019.07.025

Highlights

  • A multifunctional network material is proposed to stabilize lithium-metal anodes
  • Improved cyclability is achieved for high-voltage lithium-metal full battery
  • Direct lithium-metal processability enables practical application
  • Crosslinking chemistry is tuned to study the synergistic stabilizing effects

Implementation of lithium (Li)-metal anodes requires developments to solve the heterogeneity and instability issues of naturally formed solid-electrolyte interphase (SEI). The artificial SEI, as an alternative, enables an ideal interface by regulating critical features such as fast ion transport, conformal protection, and parasitic reaction mitigation. Herein, for the first time, we integrate all of these desired properties into a single matrix, the dynamic single-ion-conductive network (DSN), as a multifunctional artificial SEI. The DSN incorporates the tetrahedral Al(OR) 4 − (R = soft fluorinated linker) centers as both dynamic bonding motifs and counter anions, endowing it with flowability and Li + single-ion conductivity. Simultaneously, the fluorinated linkers provide chain mobility and electrolyte-blocking capability. A solution-processed DSN coating was found to simultaneously hinder electrolyte penetration, mitigate side reactions between Li and electrolyte, maintain low interfacial impedance, and allow homogenous Li deposition. With this coating, long cycle life and high Coulombic efficiency are achieved for Li-metal battery in a commercial carbonate electrolyte.


Monday, March 25, 2019

Picosun’s high aspect ratio ALD enables 3D thin-film batteries

ESPOO, Finland, 25th March 2019 – Picosun Group, a leading supplier of advanced ALD (Atomic Layer Deposition) thin film coating technology for industrial production, reports excellent results in conformal ALD coatings for solid-state 3D thin-film batteries.

Solid-state thin-film batteries are increasingly needed in portable and wearable electronics such as smartphones, tablets, smart watches, autonomous sensors, and also in implantable medical devices. These batteries have to combine small, compact size with high energy density, which is why the next step is to move away from planar battery geometry to a three-dimensional one. In 3D thin-film batteries, nanostructured, corrugated high aspect ratio (HAR) structures multiply the active surface area and thus the battery’s charge storage capacity. 
 

Advanced manufacturing methods are called for to produce the functional layers such as electrodes and solid electrolyte inside these structures. ALD is able to create the highest quality conformal material layers inside HARs even as high as 1:3000, so it shows great potential for 3D thin-film battery manufacturing. Picosun’s high aspect ratio ALD is already utilized in various semiconductor and MEMS applications on an industrial scale, and now it has been successfully used in manufacturing solid-state 3D thin-film battery electrodes. Excellent results have been achieved already with the standard PICOSUN™ ALD reactor configuration with optimized process parameters, but for even more challenging HAR coating needs, Picosun’s patented Picoflow™ diffusion enhancing technology is ideal.

“The skyrocketing popularity of portable and wearable electronics creates a demand for compact and embeddable energy sources to power these devices. Solid-state 3D thin-film batteries are a strong candidate for this, and we at Picosun are happy to introduce our ALD solutions to the manufacturers. It is notable that even with our basic ALD we are able to create the functional layers with the highest conformality inside the batteries’ challenging HAR structures, and our approach is readily scalable to high volume industrial production. And, when these structures get even more complicated on nano-scale, our Picoflow™ technology is there to guarantee top quality deposition results with industry-proven reliability,” summarizes Mr. Juhana Kostamo, Managing Director of Picosun Group.

Tuesday, January 29, 2019

The Importance of Atomic Layer Deposition (ALD) in Batteries

Here is a nice article on the importance of ALD in batteries by Dr. Arrelaine Dameron, Director of research and development at Forge Nano : "The Importance of Atomic Layer Deposition (ALD) in Batteries" [AZ Materials, LINK]

Forge Nano just recently recieved a USD 10 million invetsment by Volkswagen for new deveopment of ALD ofr lithium batteries [LINK]. 


Forge Nano ALD plant for coating tons of battery material required by the automobile industry (Picture: ForgeNano/AZ Materials)

Thursday, January 24, 2019

Volkswagen invests USD 10 M in US ALD start-up Forge Nano for battery material research

The Volkswagen Group is investing US$10 million in the start-up Forge Nano Inc with a view to reinforcing its specialist knowledge in the field of battery research. Forge Nano is investigating a material coating technology that could further improve the performance of battery materials. As a partner, Volkswagen will provide support for industrial trials of this technology. The transaction is still subject to approval by the authorities. 

(forgenano.com)

Volkswagen has been collaborating with Forge Nano on advanced battery material research since 2014. The startup with headquarters in Louisville, Colorado, is investigating processes for scaling atomic layer deposition (ALD) to create new core-shell materials, especially for battery applications. ALD is a chemical process for applying atomic scale coatings one atom at a time. With its specific ALD technology, Forge Nano aims to boost energy density of vehicle battery cells.
For example, a higher energy density would have positive effects on the range of electric vehicles. Volkswagen has been lending their automotive and battery expertise towards Forge Nano’s applied research efforts.

The Volkswagen Group is consistently forging ahead with its electric offensive and intends to offer more than 50 battery-electric models by 2025, accounting for about a fifth of its entire model portfolio. To safeguard this approach, Volkswagen is cooperating with strategic battery cell suppliers and developing its own specialist know-how in battery research. This also includes targeted venture investments. Volkswagen is increasingly investing in international start-ups to bring innovative technologies forward to production maturity together.

Dr. Axel Heinrich, Head of Volkswagen Group Research, said: “At Volkswagen, we want to be the world’s leading provider of e-mobility. We are continually expanding the battery technology know-how required for this purpose. We need to safeguard our technological competence for the future. Cooperation with start-ups is a key element in these efforts. We are acting as a partner to Forge Nano and intend to provide the team with opportunities to carry out industrial trials with its innovative technology.”

Dr. Paul Lichty, Founder and CEO of Forge Nano, said: “Our atomically precise surface engineering technology is ushering in a new era of high performance materials. We are excited to partner with a company that has such a strong commitment to commercializing innovation.”

Wednesday, December 12, 2018

Forge Nano demonstrates superior battery performance

Forge Nano is pleased to share the exciting new data above on ALD-enabled LCO batteries. If you are working with batteries in:
  • Power Tools
  • Laptops
  • Cellphones
  • Wearables
or other LCO based systems, you owe it to yourself and your customers to contact Forge Nano and investigate their exciting advancements for your applications.

If you don’t use LCO based batteries, Forge Nano has demonstrated similar performance improvements for other battery chemistries as well.

Forge Nano’s unique precision ALD nano coating process benefits extend well beyond battery materials, virtually any powder can be upgraded using their process.
 
 
Contact us at Forge Nano for more information on how our innovative process can help you achieve your product goals

John Mahoney
jmahoney@forgenano.com
(720) 531-8293

Sunday, October 28, 2018

Drexel enables a Lithium-Sulfur battery evolution

Drexel’s College of Engineering reports that researchers and the industry are looking at Li-S batteries to eventually replace Li-ion batteries because a new chemistry that theoretically allows more energy to be packed into a single battery This improved capacity, on the order of 5-10 times that of Li-ion batteries, equates to a longer run time for batteries between charges.

However, the problem is that Li-S batteries have trouble maintaining their superiority beyond just a few recharge cycles. But a solution to that problem may have been found with new research.

The new approach, reported by in a recent edition of the American Chemical Society journal Applied Materials and Interfaces, shows that it can hold polysulfides in place, maintaining the battery’s impressive stamina, while reducing the overall weight and the time required to produce them.

Lithium-sulfur batteries could be the energy storage devices of the future, if they can get past a chemical phenomenon that reduces their endurance. Drexel researchers have reported a method for making a sulfur cathode that could preserve the batteries' exceptional performance. (Image from Drexel News)

Saturday, February 10, 2018

Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes

Here is important step forward in fast roll to roll processing of Li-battery electrodes using fast spatial ALD from CU Boulder, Colorado. Spatial ALD (SALD) is based on separating the precursors and inert gas purges in space rather than in time and therefore the deposition rates up to a hundred times faster are achievable. SALD can be performed at ambient atmosphere and therefore is a cheaper technology due to less need of expensive vacuum technology compared to conventional low pressure ALD.

High speed and low cost of ownership opens the door to high volume manufacturing of bulk quantities of energy materials for applications including solar energy, energy storage, or smart windows. Previously ALD Nanosolutions has announced a Spatial ALD technology for conformal encapsulation of ALD on powder material like for instance Li-battery cathode powder (LINK). A good overview of Spatial ALD for energy applications is this review paper by David Muñoz-Rojas et al: "Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials" https://doi.org/10.1016/j.crhy.2017.09.004 [OPEN ACCESS]

Please find the JVSTA abstract below for the recent article form Boulder:

Friday, January 26, 2018

Battery Breakthrough Company Feature - ALD NanoSolutions

There is an ongoing boom in the materials supply chain industry to supply the Electrical Vehicle (EV) manufacturers with battery materials. There are a number of concerns in the supply of the actual materials (e.g. lithium, cobalt and graphite). The technological aspects are also still broad,  however it seems very likely that ALD will play a role for some of the technologies for producing future lithium batteries that we will use in basically all devices ranging from communication (smart phones) and for transportation (cars, trucks, trains, ships, airplanes etc.). 

Alumina ALD Coating on LiCoO2 cathode particles showing a clear improvment in battery cyclability. The ALD coated material (red) shows improved capacity retention compared to uncoated (black). (ALD Nano)

ALD Nano in Boulder Colorado is the pioneer in this technology area and has recently announced scaling up their technology to run high volume of powder (3000 kg/day). They have developed a Spatial vibrationg technology refered to as Continious Vibrating Reactor - CVR.

The scientific, process development and engineering teams at ALD Nano have spent considerable resources over the past few years rapidly developing this first-of-its-kind technology from research scale, bench-top to the current commercial-scale systems. A continuous vibrating reactor, or CVR, provides ALD coating capacity of more than three tons per day and 1,200 tons per year of particle materials. These techniques gained from equipment development open up new pathways for ALD Nano's growth. The CVR is a spatial ALD reactor system and can also be utilized for MLD techniques, run at atmospheric or pressurized conditions, and fitted with various features such as plasma. [LINK]

It seems to me that their technology is mature for high volume manufacturing of powder materials and that they "simply" by scaling the number and/or the size of plants can supply the know how and hardware for full scale production for any big player in the battery materials supply chain. 



ALD Nano was recently highlighted by the Colorado Cleantech Industries Association (CCIA) and here is the information given by their CEO, Wayne Simmons:

Battery Breakthrough Company Feature: ALD NanoSolutions

CCIA [LINK] : We asked several companies “What are the critical changes in the battery industry landscape that will have a strategic impact on your success?” This week, we’re highlighting ALD NanoSolutions.

Wayne Simmons, CEO

Lithium ion batteries for electric vehicles, consumer electronics, and distributed energy storage, along with new versions of lead acid batteries for vehicle start-stop fuel efficiency strategies, are driving today’s growth in the battery energy storage market. Longer term, grid-scale batteries will generate a large impact too. Overall, the dramatic changes and expansion of the battery industry are creating huge new materials markets. Every major chemical and advanced materials company in the world is attracted to this opportunity. However, for new devices like EVs to take meaningful market share, the materials for electrodes, electrolytes, and other battery components need to be engineered at the nanometer, or even atomic, scale. It is this demand for engineering new materials that improve energy storage, safety, and power management metrics, combined with the desired cost stack of inputs to the final battery price, that has a big impact on ALD Nano’s business. The key for us to succeed is to enable the new battery materials with atomic layer deposition technologies that not only solve various technical challenges to reach performance metrics, but can also scale at very low cost.
About ALD NanoSolutions  ALD NanoSolutions (ALD Nano) is creating cost-effective advanced materials through its unique portfolio of atomic layer deposition technologies to transform industries.


Tuesday, January 2, 2018

General Motors and Forge Nano has co-developed ALD technology for lithium batteries

According to recent news releases General Motors and Forge Nano has co-developed and been rewarded for ALD for lithium battery technology featuring:
  • ultrathin (thickness < 5nm) multifunctional hybrid coatings and processes.
  • solutions to critical issues involved with gas generation, manganese dissolution induced capacity loss and safety issue associated with polymeric separators.
  • scale-up production and commercialization of this innovation for both automotive and non-automotive applications.
  • semi-continuous ALD systems (the tall pilot-scale stack, as well as the large single-cycle stack), have the production capacity of more than 1 MT/day, making it possible to implement the advanced surface coating technologies into the next generation of lithium ion batteries.
 
Background information:

LOUISVILLE, CO - Forge Nano, Louisville, Colorado, recently won a 2017 R&D 100 Award as co-developer with General Motors for the development of the Ultrathin Multifunctional Hybrid Coatings and Processes. The R&D 100 Awards have served as an innovation awards program for the past 55 years, honoring great R&D pioneers and their revolutionary ideas in science and technology.

“Forge Nano was founded with a vision to deploy precision nano-coatings to make many other technologies safer, less expensive and more efficient. That vision is now a reality, and it is extremely gratifying to be honored by the R&D 100 Awards for introducing one of 2017’s most innovative and influential technology solutions,” said Forge Nano Founder and CEO Dr. Paul Lichty, who accepted the award at the R&D 100 Conference in Orlando, Florida.

Forge Nano launched in 2013 with breakthrough technology that makes nano-coatings fast, affordable and scalable in manufacturing. The company specializes in nano-coatings and atomic film deposition, serving functions from corrosion resistance to electrical insulation or conduction. As demands for next-generation materials become more and more extreme, nano-engineered surface coatings can fulfill the need for enhanced properties and precise characteristics.


The R&D 100 Award - Ultrathin multifunctional hybrid coatings and processes (LINK)

The majority of battery failure initiates from active material surfaces in the electrodes. Surface coatings, as an effective mitigating strategy, have been widely applied into battery material manufacturing process to protect active materials. Conventional coating technologies, such as chemical vapor deposition, physical vapor deposition and wet chemistry, typically generate non-uniform coating particularly on nano-sized particles. The thickness control becomes difficult, and the thicker coating typically induce high much impedance. To tackle this challenge, General Motors—a pioneer in applying surface coating using the Atomic Layer Deposition (ALD) technique—has developed several Ultrathin multifunctional hybrid coatings and processes. These ultrathin (thickness < 5nm) multifunctional coatings solve critical issues involved with gas generation, manganese dissolution induced capacity loss and safety issue associated with polymeric separators. Forge Nano has developed the technologies that enable scale-up production and commercialization of this innovation for both automotive and non-automotive applications. Their semi-continuous ALD systems (the tall pilot-scale stack, as well as the large single-cycle stack), have the production capacity of more than 1 MT/day, making it possible to implement the advanced surface coating technologies into the next generation of lithium ion batteries.

Saturday, November 4, 2017

University of Maryland presented safer Lithium batteries manufactured by ALD at AVS 64 in Tampa, Florida

Researchers demonstrate a technique to fabricate safer and more compact batteries.

WASHINGTON, D.C., October 30, 2017 -- The lithium-ion batteries that commonly power mobile phones and laptops are ubiquitous and efficient. But they can occasionally explode -- as evidenced in the batteries used by Samsung's Galaxy Note 7, which the company recalled last year. 
 

Alex Pearse posing in front of what looks like a CNT Fiji PEALD reactor amongst other things | University of Maryland (Picture form ResearchGate)
 
Solid-state batteries, which eschew the flammable and unstable liquid electrolytes of conventional lithium-ion batteries, could be a safer option. Now, researchers have demonstrated a new way to produce more efficient solid-state batteries. This proof-of-principle study may lead to safer and more compact batteries useful for everything from sensor networks to implantable biomedical devices.

Alex Pearse, a doctoral student at the University of Maryland, College Park and the Nanostructures for Electrical Energy Storage, a DOE-sponsored Energy Frontier Research Center, will present this work during the AVS 64th International Symposium and Exhibition being held Oct. 29-Nov. 3, 2017, in Tampa, Florida. 
 
Source: The DOE Science News Source (LINK)
 
Full paper: Three Dimensional Solid State Lithium Ion Batteries Fabricated Via Conformal Vapor Phase Chemistry   (LINK)

 

Friday, September 8, 2017

ALD Enabled Battery Materials, Methods and Products IP Roll-up by Forge Nano

Forge Nano is pleased to announce the completion of its Intellectual Property roll-up initiative for Atomic Layer Deposition (ALD) enabled battery materials, methods of manufacturing, and products.

Through a series of patent filings, acquisitions, and licenses, Forge Nano is pleased to offer its customers and partners a comprehensive IP portfolio to incorporate the benefits of ALD surface modification coatings into battery products for enhanced safety, lifetime and end-use performance. Forge Nano is currently accepting licensing offers for this portfolio, with the anticipation of closing on a first round of field-limited agreements by the end of 2017. 

The cornerstone of Forge Nano’s ALD-enabled battery materials IP protects lithium-containing cathode and anode materials with coatings of up to two nanometers in thickness (US 9,570,734):

Claim 1: An electrode comprising a plurality of particles having a diameter of maximally 60 μm, wherein the particles are coated with a protective layer having a uniform thickness of about 2 nm or less, wherein the protective layer of the particles is obtained by atomic layer deposition, and wherein the particles are lithium-containing particles.

Saturday, June 17, 2017

Forge Nano & NREL in Exclusive Licensing Agreement for battery materials

Agreement enables Forge Nano to fundamentally enhance lithium-ion battery safety, durability, and lifetime

The U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) has entered into an exclusive license agreement with Forge Nano to commercialize NREL’s patented battery materials and systems capable of operating safely in high-stress environments. A particular feature of the technology is the encapsulation of materials with solid electrolyte coatings that can be designed to meet the increasingly demanding needs of any battery application. Read more...
 
 

Tuesday, May 9, 2017

Forge Nano & NREL agreement on ALD Encapsulattion for lithium-ion battery safety, durability, and lifetime

Press Release: The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has entered into an exclusive license agreement with Forge Nano to commercialize NREL's patented battery materials and systems capable of operating safely in high-stress environments. A particular feature of the technology is the encapsulation of materials with solid electrolyte coatings that can be designed to meet the increasingly demanding needs of any battery application. 
These lithium-ion batteries feature a hybrid solid-liquid electrolyte system, in which the electrodes are coated with a solid electrolyte layer. This layer minimizes the potential for the formation of an internal short circuit between electrodes to prevent "thermal runaway," or the uncontrolled increase in battery cell temperature that can result in a fire or an explosion.
 
In addition, coating of the electrode materials reduces the stress on traditional polymer separators that are currently necessary components in commercial lithium-ion batteries and can allow for thinner separators designed for higher power devices. This advancement has the potential to reduce both the cost and weight of the battery device, while substantially increasing safety and lifetime. 

Monday, January 2, 2017

Safe garnet-based solid-state Li metal batteries using conformal ALD

COLLEGE PARK, Md. — A team of researchers at the University of Maryland Energy Research Center and A. James Clark School of Engineering have announced a transformative development in the race to produce batteries that are at once safe, powerful, and affordable. 
 



The researchers are developing game-changing solid-state battery technology, and have made a key advance by inserting a layer of ultra-thin aluminum oxide between lithium electrodes and a solid non-flammable ceramic electrolyte known as garnet. Prior to this advance, there had been little success in developing high-performance, garnet-based solid-state batteries, because the high impedance, more commonly called resistance, between the garnet electrolyte and electrode materials limited the flow of energy or current, dramatically decreasing the battery's ability to charge and discharge.

The University of Maryland team has solved the problem of high impedance between the garnet electrolyte and electrode materials with the layer of ultrathin aluminum oxide, which decreases the impedance 300 fold. This virtually eliminates the barrier to electricity flow within the battery, allowing for efficient charging and discharging of the stored energy.

A new paper describing the research was published online December 19 in the peer-reviewed journal Nature Materials.

“This is a revolutionary advancement in the field of solid-state batteries—particularly in light of recent battery fires, from Boeing 787s to hoverboards to Samsung smartphones,” said Liangbing Hu, associate professor of materials science and engineering and one of the corresponding authors of the paper. “Our garnet-based solid-state battery is a triple threat, solving the typical problems that trouble existing lithium-ion batteries: safety, performance, and cost.”

Thursday, November 10, 2016

Forge Nano could save Samsung phones from exploding with ALD coating

As reported by EETimes: LAKE WALES, Fla. — The exploding battery debacle of Samsung's Note 7 got it recalled, replaced, recalled again and now permanently cancelled. Any remaining units in the field are banned by the FAA from airline flights. But it all could have been avoided, according to Forge Nano (Denver, Colo., formerly PneumatiCoat Technologies), if their nano coating had been used. Forge Nano's nano coatings boost the breakdown temperature of flammable electrolyte Li-Ion batteries, putting it way far into the safe zone for nominal environmental usage. The key, according to Forge Nano (Denver) is nano-pattern atomic layer deposition (ALD).

 
"The atomic layer coatings are chemically bonded on the surface of active material particles that make up the Li-Ion battery cathode. It works like a protective coating on an M&M. Independent testing and research has shown that ALD coatings can prevent or reduce the formation of these unwanted chemical species within Li-Ion batteries that can lead exothermic reactions [thermal runaway]," Dr. James Trevey, vice president of engineering told EE Times.

Background on Forge Nano ALD grant:

PCT (Forge Nano) Awarded Department of Energy Phase II SBIR Grant for its High Rate Nanomanufacturing Approach to Low-Cost ALD Enabled Lithium Ion Battery Materials

PneumatiCoat Technologies (Forge Nano) is proud to announce the successful conversion of its DOE Phase II SBIR project for its approach to high-rate nanomanufacturing that will enable the ALD process to be adopted at low cost to the entire value chain. PCT (Forge Nano) will be scaling its high-rate manufacturing process to be capable of producing ALD coated Li-ion battery materials at rates exceeding 100 kg/day. This represents a substantial expansion of the global Particle ALD manufacturing footprint and maintains PCT’s (Forge Nano) position as the market leader bringing this technology first developed in Finland in 1992 to a commercial reality. PCT (Forge Nano) received commitments from its partners to provide PCT (Forge Nano) with over 500 kilograms of pristine cathode materials in support of its efforts. In addition to implementing a lean manufacturing vision for ALD coated materials, PCT’s (Forge Nano) R&D operations will be developing next generation coatings for advanced cathode materials for Li-ion and other types of batteries and capacitor systems. This award represents a win for the entire vehicular battery value chain. A list of awarded projects is available here.

Friday, November 4, 2016

ALD NanoSolutions Reports Banner Year as Its ALD Technology Helps Fast-Track Advanced Materials From Concept to Commercialization

BROOMFIELD, Colorado – Nov. 4, 2016 – Today, ALD NanoSolutions (ALD Nano), the pioneer and market leader in Atomic Layer Deposition (ALD) technology on particles, reported a banner year on multiple fronts. The company partners with leading global materials companies to commercialize ALD advanced materials that significantly improve the performance, safety and other characteristics of end products in industries like lighting, batteries, sensors, life sciences and catalysts. 2016 highlights include new patents, deeper customer engagements, expanded manufacturing space, and new reactors to increase production capacity. The momentum illustrates how ALD Nano is harnessing the immense near-term market opportunities for its proprietary ALD technologies outside of ALD’s traditional deployment in the semiconductor industry. 

 
Leading with Differentiated Intellectual Property (IP)
Major 2016 milestones reinforced ALD Nano’s pioneering development and leadership in ALD for control of surface properties at the atomic level for unique functionality of particles and other materials. The company obtained new patents, including some from the University of Colorado Boulder (CU Boulder), its R&D partner since inception. This brings ALD Nano’s total patent holdings to 28 issued and 14 pending. The new IP heightens the market value and cost-effective use of its “Particle ALD” and “Polymer ALD” to create advanced materials. 



An important new patent1 covers an ALD method to deposit inorganic films on organic polymer surfaces. For industries like OLED displays and lithium-ion batteries, the innovation promises breakthrough benefits that could displace other technologies. The Polymer ALD technology could better protect battery electrode separators from overheating and enable next-generation life-science tools, among other applications. 

Another new patent2 is for Particle ALD use with super capacitor electrodes, and an in-license3 from CU Boulder for additional applications of ALD for batteries. Together, they strengthen the company’s position in the energy storage market. A further patent4 covers the use of an ALD method to apply a ceramic coating to implantable medical devices. This expands ALD Nano’s position in the life sciences industry. The company also filed a patent5 internationally for its revolutionary Particle ALD continuous flow reactor system. This allows for large-scale, cost-effective Particle ALD advanced materials production.

Enabling Innovation for Manufacturers of Lithium-Ion Batteries and LED Lighting
A standout 2016 highlight was the first commercial application of Particle ALD for Cathode Active Materials (CAMs) used to produce lithium-ion batteries. The breakthrough was achieved thanks to CU Boulder’s extensive R&D and ALD Nano’s proprietary and robust IP portfolio, coupled with the company’s strategic partnership with a leading battery materials company. Particle ALD is the most effective surface modification method available for CAMs. The ALD-enabled CAMs will dramatically improve performance, extend cycle life and enhance the safety of batteries for use in consumer electronics, electric vehicles and grid storage.

Also in 2016, the company began commercial production of Particle ALD phosphors for a Fortune Global 500 customer, following a multi-year collaboration. The ALD advanced material significantly extends the brightness lifetime for LED lights, while using a fraction of the coating material required for other deposition methods.

Expanding Infrastructure to Address Growing Demand for ALD Solutions
With its accumulating IP, ALD Nano is expanding and deepening engagements with customers. To support the momentum, the company doubled manufacturing space at its headquarters in Colorado, and added new reactors to increase production capacity. Headcount has also grown in the last 12 months.

CEO Mike Masterson called 2016 a transformative year for ALD Nano: “Our growth this year coincides with the consistently superior performance of our ALD technology in many markets. This validates our early vision and is now guiding our execution strategy to create ALD advanced materials in partnership with leading sales channel partners and customers. We’ll enter 2017 firmly positioned with differentiated technology and expertise to help such companies achieve their technology and cost-of-production goals. Our growth is a tribute to the steady efforts of our team, and the extraordinary innovation contributed by each individual.”

New ALD Nano Patents
1 US Patent 9,376,750
2 US Patent 9,406,449
3 US Patent 9,196,901
4 US Patent 9,279,120
5 US Application 62/175,964

About ALD
ALD is the sequential vapor phase material deposition method that forms chemically bonded, high-purity, conformal, ultra-thin films of controlled nanometer thickness. ALD generates less waste than other deposition techniques such as chemical vapor deposition, giving customers a sustainable and cost-of-ownership edge, while helping to reduce overall costs. The atomic level precision of ALD on particles, polymers and other substrates enables new or better applications of materials resulting in ALD advanced material solutions. Devices such as consumer electronics are getting smaller and more complex, requiring novel materials to solve critical issues for marketplace adoption.

About ALD NanoSolutions
ALD NanoSolutions (ALD Nano) is creating cost-effective advanced materials that are transforming industries such as lighting, energy storage, consumer electronics, life sciences, fuel catalysts, water purification, sensors, and more. We’re the leader in Atomic Layer Deposition (ALD) technology on particles, with broad IP covering polymers and MEMS, as well. We partner with world-leading companies that leverage our material designs and reactor systems to innovate products that benefit consumers globally. For more than a decade, we have commercialized innovative ALD technologies developed internally and through research conducted at the University of Colorado Boulder. We’re headquartered in Broomfield, Colorado.

Company Contact: Mike Masterson; mmasterson@aldnanosolutions.com
Media Contact: Jane Evans-Ryan; Genuity PR; jane@genuitypr.com