Showing posts with label Lithium ion battery. Show all posts
Showing posts with label Lithium ion battery. Show all posts

Wednesday, July 8, 2015

PneumatiCoat completes DOE Project for a Battery Pilot Plant and recieves US Navy funding

Battery cathode materials with improved safety and performance. Picoshield® coatings provide improvements on many of the most common Li-ion cathode materials used today. As the leader in ALD battery materials PneumatiCoat (PCT) can attain cutting edge performance out of existing battery materials, both cathode and anode. 

Recently has had success in finalizing and receiving additional DOE funded projects as reported here:

PCT Presenting at DOE Annual Merit Review in Arlington, VA

June 2015 - PCT is presenting the most recent results from our DOE Phase II project. With the completion of our pilot plant, large format Picoshield® battery cells are built and producing excellent data. The results expand on the positive work conducted during the Phase I by proving out the quality, consistency, and throughput achievable using our high throughput system. The Annual Merit Review showcases DOE funded research in the fields of hydrogen, fuel cells, and vehicle technologies.

PCT Awarded NAVY SBIR Phase I for "Long Lasting, Highly Efficient, and Safe Batteries for Sensor Systems"

June 2015 - Pneumaticoat Technologies has been awarded a DOD Phase I SBIR from the Navy to develop improved batteries for sensor systems. This work will focus on improving the overall safety of the battery systems and improving the lifetime performance of critical, battery operated, sensors. Picoshield® coatings will play a crucial role in improving battery performance.
More informsation can be found here: http://www.pneumaticoat.com/news.html 


By incorporating well established manufacturing principles (continuous vs. batch, variable throughput vs. fixed throughput, etc.), PneumatiCoat Technologies has developed an efficient and cheap process for precise coating of powders, flats, and objects. Thanks to our innovative process design and system building know-how, Pneumaticoat Technologies is pushing the boundaries of ALD for manufacturing. With our technology, the days of ALD being too slow and too expensive are over. With high throughput manufacturing capabilities, at inexpensive price points, a great majority of the application technologies that were "put on the shelf" can now be reconsidered as viable commercial products. Combined with the exponential growth in application R&D, PneumatiCoat Technologies' systems are well-poised to help usher in a new wave of customized products to market. (http://www.pneumaticoat.com)

Monday, June 15, 2015

KAUST demonstrate ALD Passivation to stop Degradation of Nanorod Anodes in Lithium Ion Batteries

Researchers at King Abdullah University of Science and Technology (KAUST) demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling, which is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). The nanoscale HfO2 layer was deposited on the prepared electrodes at 180 °C using atomic layer deposition system (Ultratech/Cambridge Nanotech Savannah).
 
 

Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes

B. Ahmed, Muhammad Shahid, D. H. Nagaraju , D. H. Anjum , Mohamed N. Hedhili, and H. N. Alshareef
Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955−6900, Saudi Arabia
ACS Appl. Mater. Interfaces, Article ASAP
DOI: 10.1021/acsami.5b03395
Publication Date (Web): June 3, 2015


 
We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.

Sunday, May 24, 2015

Next-Generation Lithium Metal Anode Engineering by Atomic Layer Deposition

Researchers at University of Maryland demonstrate Al2O3 ALD of protection layers directly on Li metal that protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g–1. Major obstacles for lithium metal anodes is that the Li surface is highly reactive which can lead to reactions with the solvents and the electrolyte and contamination, reducing the performance of batteries employing Li metal anodes. 

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition 

Alexander C. Kozen, Chuan-Fu Lin, Alexander J. Pearse, Marshall A. Schroeder, Xiaogang Han, Liangbing Hu, Sang-Bok Lee, Gary W. Rubloff, and Malachi Noked





Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g–1. However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing the performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom-made ultrahigh vacuum integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof-of-concept that a 14 nm thick ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li–S battery cells as a test system, we demonstrate an improved capacity retention using ALD-protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles.

Saturday, May 16, 2015

ALD protected Lithium Metal Anodes with improved capacity retention

University of Maryland demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. They show that 14 nm thick, ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, an improved capacity retention using ALD protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles was shown.

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition


Alexander C Kozen, Chuan-Fu Lin, Alexander J Pearse, Marshall A Schroeder, Xiaogang Han, Liangbing Hu, Sang Bok Lee, Gary W. Rubloff, and Malachi Noked
ACS Nano, Just Accepted Manuscript
Publication Date (Web): May 13, 2015

Lithium metal is considered the most promising anode for next-generation batteries due to its high energy density of 3840 mAhg-1. However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom made ultrahigh vacuum (UHV) integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof of concept that a 14 nm thick, ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, we demonstrate an improved capacity retention using ALD protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles.

Sunday, April 5, 2015

Amorphous ALD iron phosphate buffers high capacities at high current densities in Litthium Ion Batteries


Researchers at University of Western Ontario, Canada, shows that by coating LiNi0.5Mn1.5O4 cathode material powders with ultrathin amorphous FePO4 by ALD it is possible to dramatically increase the capacity retention of LiNi0.5Mn1.5O4. The researchers believe that the amorphous FePO4 layer acts as a lithium-ions reservoir and electrochemically active buffer layer during the charge/discharge cycling, helping achieve high capacities in LiNi0.5Mn1.5O4, especially at high current densities. 

http://www.premierlife.ca/wp-content/uploads/2012/03/Western_Logo_Full_RGB.jpg

The ALD amorphous FePO4 was deposited using ferrocene (FeCp2), ozone, trimethyl phosphate (TMPO), and water (H2O) in an Ultratech/Cambridge Nanotech Savannah 100 ALD system. 

Please check out all the details in the Open Access article below:

Unravelling the Role of Electrochemically Active FePO4 Coating by Atomic Layer Deposition for Increased High-Voltage Stability of LiNi0.5Mn1.5O4 Cathode Material [OPEN ACCESS] 
Biwei Xiao1, Jian Liu1, Qian Sun1, Biqiong Wang1,2, Mohammad Norouzi Banis1, Dong Zhao2, Zhiqiang Wang2, Ruying Li1, Xiaoyu Cui3, Tsun-Kong Sham2 and Xueliang Sun1,*
Article first published online: 25 MAR 2015, DOI: 10.1002/advs.201500022

Ultrathin amorphous FePO4 coating derived by atomic layer deposition (ALD) is used to coat the 5 V LiNi0.5Mn1.5O4 cathode material powders, which dramatically increases the capacity retention of LiNi0.5Mn1.5O4. It is believed that the amorphous FePO4 layer could act as a lithium-ions reservoir and electrochemically active buffer layer during the charge/discharge cycling, helping achieve high capacities in LiNi0.5Mn1.5O4, especially at high current densities.



Schematic illustrations of a) LNMO-n upon cycling; b) illustration of the electrolyte highest occupied molecular orbital (HOMO) and work functions of FePO4 and LiNi0.5Mn1.5O4.



FESEM images of a) LNMO-0 and b) LNMO-20; c) HRTEM images of LNMO-20 (inset: Electron diffraction patterns of the LNMO-20 along the [110] zone axis).

Saturday, March 21, 2015

Observation of Nanoscale Processes in Lithium Batteries

B. L. Mehdi, J. Qian, E. Nasybulin, C. Park, D. A. Welch, R. Faller, H. Mehta, W. A. Henderson, W. Xu, C. M. Wang, J. E. Evans, J. Liu, J. -G. Zhang, K. T. Mueller, and N. D. Browning
Nano Lett., 2015, 15 (3), pp 2168–2173

 
An operando electrochemical stage for the transmission electron microscope has been configured to form a “Li battery” that is used to quantify the electrochemical processes that occur at the anode during charge/discharge cycling. Of particular importance for these observations is the identification of an image contrast reversal that originates from solid Li being less dense than the surrounding liquid electrolyte and electrode surface. This contrast allows Li to be identified from Li-containing compounds that make up the solid-electrolyte interphase (SEI) layer. By correlating images showing the sequence of Li electrodeposition and the evolution of the SEI layer with simultaneously acquired and calibrated cyclic voltammograms, electrodeposition, and electrolyte breakdown processes can be quantified directly on the nanoscale. This approach opens up intriguing new possibilities to rapidly visualize and test the electrochemical performance of a wide range of electrode/electrolyte combinations for next generation battery systems.


Sunday, March 1, 2015

Chemists boost carbon's stability of lithium-air batteries by ALD

CHESTNUT HILL, MA (February 25, 2015) - To power a car so it can travel hundreds of miles at a time, lithium-ion batteries of the future are going to have to hold more energy without growing too big in size.

That's one of the dilemmas confronting efforts to power cars through re-chargeable battery technologies. In order to hold enough energy to enable a car trip of 300-500 miles before re-charging, current lithium-ion batteries become too big or too expensive.

IMAGE
Chemists from Boston College and UMass Amherst applied two nano-scale coatings to a unique form of carbon, known as 3DOm. The resulting boost in 3DOm's stability produced performance gains that could lead to the material's use in lithium-air batteries. (Image : Boston College)

In the search for the "post-lithium-ion" battery, Associate Professor of Chemistry Dunwei Wang has been developing materials that might one day enable the manufacture of new batteries capable of meeting power demands within the size and cost constraints of car makers and other industries.

In a recent report published in the German journal Angewandt Chemie (Abstract below), Wang and a colleague from the University of Massachusetts Amherst unveiled a new method of stabilizing carbon - a central structural component of any battery - that could pave the way to new performance standards in the hunt for a lithium-ion components.

Central to the search for improved performance is the ability to shed weight and costly chemical components. Researchers pursuing a "lithium-air" battery have focused on a chemical reaction of lithium and oxygen, which can be pulled from the air. But the materials used to generate this reaction have shown poor life cycles, lasting through just a few charges.


Boston College chemist Dunwei Wang

The culprit, said Wang, is the instability of carbon, an essential structural support to a battery's electrode, a conductor where charges collect and dispense.

"Carbon is used in every battery because it has that combination of low cost, light weight and conductivity," said Wang. "You can't just scrap it."

So Wang and UMass Assistant Professor of Chemical Engineering Wei Fan set to work improving the performance capabilities of a newly engineered form of carbon fabricated by Fan. It's called three-dimensionally ordered mesoporous (3DOm) carbon and scientists value it for its highly ordered structure.

Employing a technique called atomic layer deposition (ALD), the researchers grew a thin coating of iron oxide on the carbon, a step that enhanced the reactivity between lithium and oxygen and improved performance on the charge cycle. Next, they used ALD to apply a coating of palladium nanoparticles, which effectively reduced carbon's deteriorative reaction with oxygen and improved the discharge cycle.

Their initial tests on the material showed marked improvement in performance. "We demonstrated that a particular form of carbon can be used to support a new type of chemistry that allows for energy storage with the promise of five to 10 times more energy density than state-of-the-art lithium-ion batteries we see today," said Wang. "We see this as significantly improving the cyclability of the battery, which is a key issue."

Wang said the findings show 3DOm carbon can meet new performance standards when it is stabilized.

"The key innovation we make here is that 3DOm carbon is stable - we have stabilized something that was not previously stable," said Wang.


Three Dimensionally Ordered Mesoporous Carbon as a Stable, High-Performance Li–O2 Battery Cathode
Jin Xie, Xiahui Yao, Qingmei Cheng, Ian P. Madden, Paul Dornath, Chun-Chih Chang, Prof. Dr. Wei Fan, Prof. Dr. Dunwei Wang

Article first published online: 10 FEB 2015
DOI: 10.1002/ange.201410786
Enabled by the reversible conversion between Li2O2 and O2, Li–O2 batteries promise theoretical gravimetric capacities significantly greater than Li-ion batteries. The poor cycling performance, however, has greatly hindered the development of this technology. At the heart of the problem is the reactivity exhibited by the carbon cathode support under cell operation conditions. One strategy is to conceal the carbon surface from reactive intermediates. Herein, we show that long cyclability can be achieved on three dimensionally ordered mesoporous (3DOm) carbon by growing a thin layer of FeOx using atomic layer deposition (ALD). 3DOm carbon distinguishes itself from other carbon materials with well-defined pore structures, providing a unique material to gain insight into processes key to the operations of Li–O2 batteries. When decorated with Pd nanoparticle catalysts, the new cathode exhibits a capacity greater than 6000 mAh gcarbon−1 and cyclability of more than 68 cycles.