Scaling Atomic Layer Deposition (ALD) from laboratory research to high-volume semiconductor manufacturing presents numerous challenges, particularly as the industry moves towards more complex 3D structures like 3D NAND, Through-Silicon Vias (TSVs), and nanosheet transistors. One major hurdle is the disparity between lab-scale process development and industrial fabrication, where variations in chamber design and wafer size can lead to unexpected process deviations. Additionally, throughput and cost considerations play a critical role, as slow deposition rates can hinder industrial adoption due to high operating expenses. Defect control is another key concern, as even minuscule particle contamination can significantly impact yield, yet many research facilities lack the advanced defect detection capabilities necessary for high-volume manufacturing. Furthermore, test structure availability is a limiting factor, with sub-100 nm, high-aspect-ratio structures often restricted to leading semiconductor manufacturers, creating barriers for process validation and qualification.
Chipmetrics' PillarHall® metrology chips offer an innovative solution to these challenges by providing dedicated test structures with aspect ratios up to 10,000:1, allowing for rapid and cost-effective ALD validation without the need for complex cross-sectional analysis. These metrology chips facilitate the development of high-aspect-ratio thin film depositions by enabling researchers and manufacturers to evaluate process performance in a scalable manner, ensuring compatibility with industrial requirements. Beyond technical validation, the ability to conduct precise, non-destructive measurements enhances efficiency and reduces development costs, accelerating the transition from lab to fab. As semiconductor manufacturing continues to evolve, tools like PillarHall play a crucial role in streamlining the process transfer while maintaining the precision and reliability demanded by the industry.
Source:
No comments:
Post a Comment