Wednesday, February 4, 2015

ALD is the fastest growing thin film equipment technology

According to a recent market report released by Global Industry Analysts, Inc., Atomic Layer Deposition (ALD) represents the fastest growing equipment category driven by increasing adoption in the production of advanced semiconductor solutions for use in new generation electronic gadgets such as mobile phones, smartphones, PDAs, DVD players, portable media players, video games, home-theater systems, microwaves, and printers, among others.


Full report can be accessed here (for $4950): http://www.strategyr.com/MarketResearch/Thin_Layer_Deposition_Equipment_Market_Trends.asp

Key players covered in the report include AIXTRON SE, Applied Materials Inc., ASM International N.V., Canon ANELVA Corporation, CHA Industries Inc., CVD Equipment Corporation, Denton Vacuum LLC, Edwards Limited, Ionbond AG, Jusung Engineering Co. Ltd., KDF Electronic & Vacuum Services Inc., Kokusai Semiconductor Equipment Corporation, Lam Research Corporation, RIBER SA, Seki Diamond Systems, Silicon Genesis Corporation, SPTS Technologies, Taiyo Nippon Sanso Corporation, Ti-Coating Inc., Tokyo Electron Limited, ULVAC Technologies Inc., Vapor Technologies Inc. and Veeco Instruments Inc.

Tuesday, February 3, 2015

Novel High k Applications Workshop 2015 by NaMLab

Similar to the last years, NaMLab invites to the Novel High-k Application Workshop on March 10th, 2015. New challenges offered by the application of high-k dielectric materials in micro– and nanoelectronics will be discussed by more than 80 participants from industry, research institutes and universities. NaMLab created with the workshop a stimulating European platform for application-oriented scientist to exchange ideas and discuss latest experimental results on MIM-capacitors, process technology, leakage & reliability as well as characterization of high-k dielectrics integrated in silicon based micro– and nanoelectronics. 
 
 
Registration:
Groups: http://de.amiando.com/ZXEIICS
Single persons: http://de.amiando.com/JRUKCCB

Location:
Faculty of Computer Science - Technical University of Dresden -
Noethnitzer Strasse 46
check: Google Maps for location

http://www.namlab.com/news/events-1/high-k-applications-workshop-2015
 
 
Sponsors:
COST | European Cooperation in Science and Technology      
 

University of Manchester slim down LEDs using atom thick materials

Ultrathin, flexible and semi-transparent LEDs made from a mix of different atom thick materials have been created by researchers in the UK and Japan. Beyond their scientific importance, the researchers believe the design could have significant commercial potential. Other researchers agree, but says that a suitable method for producing the devices is still needed.
 

Since graphene's remarkable electrical properties were discovered, other monolayer materials followed whose electrical properties are often very different. While graphene is an excellent conductor, boron nitride is an insulator and some transition metal dichalcogenide (TMDCs) monolayers are semiconductors. Several research groups have developed simple van der Waals heterostructures, such as tunnelling transistors, by combining multiple layers. Now Konstantin Novoselov, who shared the 2010 physics Nobel prize with Andre Geim for their discovery of graphene, and colleagues at the University of Manchester, have produced LEDs using the most complex monolayer heterostructures ever created.
 

Light-emitting diodes by band-structure engineering in van der Waals heterostructures
F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii & K. S. Novoselov
Nature Materials(2015) doi:10.1038/nmat4205 Published online 02 February 2015 

The advent of graphene and related 2D materials, has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, and so on. Here, we take the complexity and functionality of such van der Waals heterostructures to the next level by introducing quantum wells (QWs) engineered with one atomic plane precision. We describe light-emitting diodes (LEDs) made by stacking metallic graphene, insulating hexagonal ​boron nitride and various semiconducting monolayers into complex but carefully designed sequences. Our first devices already exhibit an extrinsic quantum efficiency of nearly 10% and the emission can be tuned over a wide range of frequencies by appropriately choosing and combining 2D semiconductors (monolayers of transition metal dichalcogenides). By preparing the heterostructures on elastic and transparent substrates, we show that they can also provide the basis for flexible and semi-transparent electronics. The range of functionalities for the demonstrated heterostructures is expected to grow further on increasing the number of available 2D crystals and improving their electronic quality.

Heterostructure devices with a SQW and MQWs.

Monday, February 2, 2015

Rare Earths Elements in High-Tech Industries: Market Analysis and Forecasts amid China's Trade Embargo

Rare earth elements are used in CMP polishing slurries and as high-k dielectrics in the semiconductor industry. . Prices of ceria, used in STI planarization slurries, have increased 1300% between 2009 and 2010 because of an embargo by China, home to 97% of the rare earth mines. This report analyzes the impact of the embargo on high-tech industries such as semiconductors, HDDs, LCDs, consumer products, and green technology.

Manufacturers of a broad spectrum of high-tech products have been feeling the impact of price hikes in rare earth element-based processing materials because of the Chinese embargo in late 2010. China, which accounts for 90 percent of global rare earth supplies, has been tightening trade in the strategic metals since late 2010, resulting in an explosion in prices.

Japan accounts for a third of global demand and has been looking to diversify its supply sources, particularly of heavy rare earths such as dysprosium used in magnets.

In semiconductor manufacturing, rare earth materials are used as high-k dielectric films and as polishing materials in CMP. Prices of ceria, used in STI planarization slurries, increased 1300% a few years ago.

Ceria is also used in the polishing of glass disks for hard disk drives (HDDs), LCD panels, and high brightness LEDs (HBLEDs).

Europium is a rare earth used as a phosphor in Cold Cathode Fluorescent Lamps (CCFL) used in backlights for notebooks and in PDP TVs. Price hikes of 170% in the a few years ago for Europium filtered down the supply chain to manufacturers of these end products.

Neodymium is a rare earth element used in magnets for HDDs, wind turbines, and hybrid electric vehicles. Neodymium is already in short supply, and prices have increase 420%.

According to the report, China can supply rare earth products as pure as 99.9999%, while French companies can only produce 99.999% pure products and Japanese firms generally produce 99.9% purity products. With a supply chain of raw material and refining prowess, this is a wake-up call for non-Chinese mining operations, governments, and corporations to take proactive steps to get out of the stranglehold China has on the rest of the world.

A $14 billion market in 2017.

Read the full report: http://www.reportlinker.com/p02244733-summary/view-report.html

At 7nm Silicon giving way to Ge, III-IV, CNT and Graphene

In 1950s, when industry has moved from vacuum-tube diodes and triodes to solid-state diodes and transistors, electronics device researchers have selected Germanium as their semiconductor material. Early solid state diodes and bipolar junction transistors were made using Germanium material. But quickly Germanium replaced with silicon. In today's complementary metal–oxide–semiconductor (CMOS) digital integrated circuits, silicon is used near 100%. Now with the geometries of MOSFET shrinking further down the 14/10 nm, the performance of silicon as MOSFET channel material is questionable, with limitations in frequency of switching, and even the switch itself is erroneously operating. Well the future can be called post-silicon era, where the industry is moving from microelectronics to nanoelectronics/photonics.


IBM said in one of its release "Their (latest Si chips) increasingly small dimensions, now reaching the nanoscale, will prohibit any gains in performance due to the nature of Silicon and the laws of physics. Within a few more generations, classical scaling and shrinkage will no longer yield the sizable benefits of lower power, lower cost and higher speed processors that the industry has become accustomed to."

In the immediate future, the transition into <7nm is basically moving into non-Silicon CMOS switching, EUV lithography and increased on-chip photonics, a combination of control of electrons and photon flow in single integrated device. The 3D growth of structures will be more prominent.

Full article: At 7nm Silicon giving way to Ge, III-IV, CNT and Graphene : http://www.eeherald.com/section/news/onws20150111001a.html