Showing posts with label Lithium ion battery. Show all posts
Showing posts with label Lithium ion battery. Show all posts

Sunday, October 28, 2018

Drexel enables a Lithium-Sulfur battery evolution

Drexel’s College of Engineering reports that researchers and the industry are looking at Li-S batteries to eventually replace Li-ion batteries because a new chemistry that theoretically allows more energy to be packed into a single battery This improved capacity, on the order of 5-10 times that of Li-ion batteries, equates to a longer run time for batteries between charges.

However, the problem is that Li-S batteries have trouble maintaining their superiority beyond just a few recharge cycles. But a solution to that problem may have been found with new research.

The new approach, reported by in a recent edition of the American Chemical Society journal Applied Materials and Interfaces, shows that it can hold polysulfides in place, maintaining the battery’s impressive stamina, while reducing the overall weight and the time required to produce them.

Lithium-sulfur batteries could be the energy storage devices of the future, if they can get past a chemical phenomenon that reduces their endurance. Drexel researchers have reported a method for making a sulfur cathode that could preserve the batteries' exceptional performance. (Image from Drexel News)

Saturday, February 10, 2018

Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes

Here is important step forward in fast roll to roll processing of Li-battery electrodes using fast spatial ALD from CU Boulder, Colorado. Spatial ALD (SALD) is based on separating the precursors and inert gas purges in space rather than in time and therefore the deposition rates up to a hundred times faster are achievable. SALD can be performed at ambient atmosphere and therefore is a cheaper technology due to less need of expensive vacuum technology compared to conventional low pressure ALD.

High speed and low cost of ownership opens the door to high volume manufacturing of bulk quantities of energy materials for applications including solar energy, energy storage, or smart windows. Previously ALD Nanosolutions has announced a Spatial ALD technology for conformal encapsulation of ALD on powder material like for instance Li-battery cathode powder (LINK). A good overview of Spatial ALD for energy applications is this review paper by David Muñoz-Rojas et al: "Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials" https://doi.org/10.1016/j.crhy.2017.09.004 [OPEN ACCESS]

Please find the JVSTA abstract below for the recent article form Boulder:

Friday, January 26, 2018

Battery Breakthrough Company Feature - ALD NanoSolutions

There is an ongoing boom in the materials supply chain industry to supply the Electrical Vehicle (EV) manufacturers with battery materials. There are a number of concerns in the supply of the actual materials (e.g. lithium, cobalt and graphite). The technological aspects are also still broad,  however it seems very likely that ALD will play a role for some of the technologies for producing future lithium batteries that we will use in basically all devices ranging from communication (smart phones) and for transportation (cars, trucks, trains, ships, airplanes etc.). 

Alumina ALD Coating on LiCoO2 cathode particles showing a clear improvment in battery cyclability. The ALD coated material (red) shows improved capacity retention compared to uncoated (black). (ALD Nano)

ALD Nano in Boulder Colorado is the pioneer in this technology area and has recently announced scaling up their technology to run high volume of powder (3000 kg/day). They have developed a Spatial vibrationg technology refered to as Continious Vibrating Reactor - CVR.

The scientific, process development and engineering teams at ALD Nano have spent considerable resources over the past few years rapidly developing this first-of-its-kind technology from research scale, bench-top to the current commercial-scale systems. A continuous vibrating reactor, or CVR, provides ALD coating capacity of more than three tons per day and 1,200 tons per year of particle materials. These techniques gained from equipment development open up new pathways for ALD Nano's growth. The CVR is a spatial ALD reactor system and can also be utilized for MLD techniques, run at atmospheric or pressurized conditions, and fitted with various features such as plasma. [LINK]

It seems to me that their technology is mature for high volume manufacturing of powder materials and that they "simply" by scaling the number and/or the size of plants can supply the know how and hardware for full scale production for any big player in the battery materials supply chain. 



ALD Nano was recently highlighted by the Colorado Cleantech Industries Association (CCIA) and here is the information given by their CEO, Wayne Simmons:

Battery Breakthrough Company Feature: ALD NanoSolutions

CCIA [LINK] : We asked several companies “What are the critical changes in the battery industry landscape that will have a strategic impact on your success?” This week, we’re highlighting ALD NanoSolutions.

Wayne Simmons, CEO

Lithium ion batteries for electric vehicles, consumer electronics, and distributed energy storage, along with new versions of lead acid batteries for vehicle start-stop fuel efficiency strategies, are driving today’s growth in the battery energy storage market. Longer term, grid-scale batteries will generate a large impact too. Overall, the dramatic changes and expansion of the battery industry are creating huge new materials markets. Every major chemical and advanced materials company in the world is attracted to this opportunity. However, for new devices like EVs to take meaningful market share, the materials for electrodes, electrolytes, and other battery components need to be engineered at the nanometer, or even atomic, scale. It is this demand for engineering new materials that improve energy storage, safety, and power management metrics, combined with the desired cost stack of inputs to the final battery price, that has a big impact on ALD Nano’s business. The key for us to succeed is to enable the new battery materials with atomic layer deposition technologies that not only solve various technical challenges to reach performance metrics, but can also scale at very low cost.
About ALD NanoSolutions  ALD NanoSolutions (ALD Nano) is creating cost-effective advanced materials through its unique portfolio of atomic layer deposition technologies to transform industries.


Tuesday, January 2, 2018

General Motors and Forge Nano has co-developed ALD technology for lithium batteries

According to recent news releases General Motors and Forge Nano has co-developed and been rewarded for ALD for lithium battery technology featuring:
  • ultrathin (thickness < 5nm) multifunctional hybrid coatings and processes.
  • solutions to critical issues involved with gas generation, manganese dissolution induced capacity loss and safety issue associated with polymeric separators.
  • scale-up production and commercialization of this innovation for both automotive and non-automotive applications.
  • semi-continuous ALD systems (the tall pilot-scale stack, as well as the large single-cycle stack), have the production capacity of more than 1 MT/day, making it possible to implement the advanced surface coating technologies into the next generation of lithium ion batteries.
 
Background information:

LOUISVILLE, CO - Forge Nano, Louisville, Colorado, recently won a 2017 R&D 100 Award as co-developer with General Motors for the development of the Ultrathin Multifunctional Hybrid Coatings and Processes. The R&D 100 Awards have served as an innovation awards program for the past 55 years, honoring great R&D pioneers and their revolutionary ideas in science and technology.

“Forge Nano was founded with a vision to deploy precision nano-coatings to make many other technologies safer, less expensive and more efficient. That vision is now a reality, and it is extremely gratifying to be honored by the R&D 100 Awards for introducing one of 2017’s most innovative and influential technology solutions,” said Forge Nano Founder and CEO Dr. Paul Lichty, who accepted the award at the R&D 100 Conference in Orlando, Florida.

Forge Nano launched in 2013 with breakthrough technology that makes nano-coatings fast, affordable and scalable in manufacturing. The company specializes in nano-coatings and atomic film deposition, serving functions from corrosion resistance to electrical insulation or conduction. As demands for next-generation materials become more and more extreme, nano-engineered surface coatings can fulfill the need for enhanced properties and precise characteristics.


The R&D 100 Award - Ultrathin multifunctional hybrid coatings and processes (LINK)

The majority of battery failure initiates from active material surfaces in the electrodes. Surface coatings, as an effective mitigating strategy, have been widely applied into battery material manufacturing process to protect active materials. Conventional coating technologies, such as chemical vapor deposition, physical vapor deposition and wet chemistry, typically generate non-uniform coating particularly on nano-sized particles. The thickness control becomes difficult, and the thicker coating typically induce high much impedance. To tackle this challenge, General Motors—a pioneer in applying surface coating using the Atomic Layer Deposition (ALD) technique—has developed several Ultrathin multifunctional hybrid coatings and processes. These ultrathin (thickness < 5nm) multifunctional coatings solve critical issues involved with gas generation, manganese dissolution induced capacity loss and safety issue associated with polymeric separators. Forge Nano has developed the technologies that enable scale-up production and commercialization of this innovation for both automotive and non-automotive applications. Their semi-continuous ALD systems (the tall pilot-scale stack, as well as the large single-cycle stack), have the production capacity of more than 1 MT/day, making it possible to implement the advanced surface coating technologies into the next generation of lithium ion batteries.

Saturday, November 4, 2017

University of Maryland presented safer Lithium batteries manufactured by ALD at AVS 64 in Tampa, Florida

Researchers demonstrate a technique to fabricate safer and more compact batteries.

WASHINGTON, D.C., October 30, 2017 -- The lithium-ion batteries that commonly power mobile phones and laptops are ubiquitous and efficient. But they can occasionally explode -- as evidenced in the batteries used by Samsung's Galaxy Note 7, which the company recalled last year. 
 

Alex Pearse posing in front of what looks like a CNT Fiji PEALD reactor amongst other things | University of Maryland (Picture form ResearchGate)
 
Solid-state batteries, which eschew the flammable and unstable liquid electrolytes of conventional lithium-ion batteries, could be a safer option. Now, researchers have demonstrated a new way to produce more efficient solid-state batteries. This proof-of-principle study may lead to safer and more compact batteries useful for everything from sensor networks to implantable biomedical devices.

Alex Pearse, a doctoral student at the University of Maryland, College Park and the Nanostructures for Electrical Energy Storage, a DOE-sponsored Energy Frontier Research Center, will present this work during the AVS 64th International Symposium and Exhibition being held Oct. 29-Nov. 3, 2017, in Tampa, Florida. 
 
Source: The DOE Science News Source (LINK)
 
Full paper: Three Dimensional Solid State Lithium Ion Batteries Fabricated Via Conformal Vapor Phase Chemistry   (LINK)

 

Friday, September 8, 2017

ALD Enabled Battery Materials, Methods and Products IP Roll-up by Forge Nano

Forge Nano is pleased to announce the completion of its Intellectual Property roll-up initiative for Atomic Layer Deposition (ALD) enabled battery materials, methods of manufacturing, and products.

Through a series of patent filings, acquisitions, and licenses, Forge Nano is pleased to offer its customers and partners a comprehensive IP portfolio to incorporate the benefits of ALD surface modification coatings into battery products for enhanced safety, lifetime and end-use performance. Forge Nano is currently accepting licensing offers for this portfolio, with the anticipation of closing on a first round of field-limited agreements by the end of 2017. 

The cornerstone of Forge Nano’s ALD-enabled battery materials IP protects lithium-containing cathode and anode materials with coatings of up to two nanometers in thickness (US 9,570,734):

Claim 1: An electrode comprising a plurality of particles having a diameter of maximally 60 μm, wherein the particles are coated with a protective layer having a uniform thickness of about 2 nm or less, wherein the protective layer of the particles is obtained by atomic layer deposition, and wherein the particles are lithium-containing particles.

Saturday, June 17, 2017

Forge Nano & NREL in Exclusive Licensing Agreement for battery materials

Agreement enables Forge Nano to fundamentally enhance lithium-ion battery safety, durability, and lifetime

The U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) has entered into an exclusive license agreement with Forge Nano to commercialize NREL’s patented battery materials and systems capable of operating safely in high-stress environments. A particular feature of the technology is the encapsulation of materials with solid electrolyte coatings that can be designed to meet the increasingly demanding needs of any battery application. Read more...
 
 

Tuesday, May 9, 2017

Forge Nano & NREL agreement on ALD Encapsulattion for lithium-ion battery safety, durability, and lifetime

Press Release: The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has entered into an exclusive license agreement with Forge Nano to commercialize NREL's patented battery materials and systems capable of operating safely in high-stress environments. A particular feature of the technology is the encapsulation of materials with solid electrolyte coatings that can be designed to meet the increasingly demanding needs of any battery application. 
These lithium-ion batteries feature a hybrid solid-liquid electrolyte system, in which the electrodes are coated with a solid electrolyte layer. This layer minimizes the potential for the formation of an internal short circuit between electrodes to prevent "thermal runaway," or the uncontrolled increase in battery cell temperature that can result in a fire or an explosion.
 
In addition, coating of the electrode materials reduces the stress on traditional polymer separators that are currently necessary components in commercial lithium-ion batteries and can allow for thinner separators designed for higher power devices. This advancement has the potential to reduce both the cost and weight of the battery device, while substantially increasing safety and lifetime. 

Monday, January 2, 2017

Safe garnet-based solid-state Li metal batteries using conformal ALD

COLLEGE PARK, Md. — A team of researchers at the University of Maryland Energy Research Center and A. James Clark School of Engineering have announced a transformative development in the race to produce batteries that are at once safe, powerful, and affordable. 
 



The researchers are developing game-changing solid-state battery technology, and have made a key advance by inserting a layer of ultra-thin aluminum oxide between lithium electrodes and a solid non-flammable ceramic electrolyte known as garnet. Prior to this advance, there had been little success in developing high-performance, garnet-based solid-state batteries, because the high impedance, more commonly called resistance, between the garnet electrolyte and electrode materials limited the flow of energy or current, dramatically decreasing the battery's ability to charge and discharge.

The University of Maryland team has solved the problem of high impedance between the garnet electrolyte and electrode materials with the layer of ultrathin aluminum oxide, which decreases the impedance 300 fold. This virtually eliminates the barrier to electricity flow within the battery, allowing for efficient charging and discharging of the stored energy.

A new paper describing the research was published online December 19 in the peer-reviewed journal Nature Materials.

“This is a revolutionary advancement in the field of solid-state batteries—particularly in light of recent battery fires, from Boeing 787s to hoverboards to Samsung smartphones,” said Liangbing Hu, associate professor of materials science and engineering and one of the corresponding authors of the paper. “Our garnet-based solid-state battery is a triple threat, solving the typical problems that trouble existing lithium-ion batteries: safety, performance, and cost.”

Thursday, November 10, 2016

Forge Nano could save Samsung phones from exploding with ALD coating

As reported by EETimes: LAKE WALES, Fla. — The exploding battery debacle of Samsung's Note 7 got it recalled, replaced, recalled again and now permanently cancelled. Any remaining units in the field are banned by the FAA from airline flights. But it all could have been avoided, according to Forge Nano (Denver, Colo., formerly PneumatiCoat Technologies), if their nano coating had been used. Forge Nano's nano coatings boost the breakdown temperature of flammable electrolyte Li-Ion batteries, putting it way far into the safe zone for nominal environmental usage. The key, according to Forge Nano (Denver) is nano-pattern atomic layer deposition (ALD).

 
"The atomic layer coatings are chemically bonded on the surface of active material particles that make up the Li-Ion battery cathode. It works like a protective coating on an M&M. Independent testing and research has shown that ALD coatings can prevent or reduce the formation of these unwanted chemical species within Li-Ion batteries that can lead exothermic reactions [thermal runaway]," Dr. James Trevey, vice president of engineering told EE Times.

Background on Forge Nano ALD grant:

PCT (Forge Nano) Awarded Department of Energy Phase II SBIR Grant for its High Rate Nanomanufacturing Approach to Low-Cost ALD Enabled Lithium Ion Battery Materials

PneumatiCoat Technologies (Forge Nano) is proud to announce the successful conversion of its DOE Phase II SBIR project for its approach to high-rate nanomanufacturing that will enable the ALD process to be adopted at low cost to the entire value chain. PCT (Forge Nano) will be scaling its high-rate manufacturing process to be capable of producing ALD coated Li-ion battery materials at rates exceeding 100 kg/day. This represents a substantial expansion of the global Particle ALD manufacturing footprint and maintains PCT’s (Forge Nano) position as the market leader bringing this technology first developed in Finland in 1992 to a commercial reality. PCT (Forge Nano) received commitments from its partners to provide PCT (Forge Nano) with over 500 kilograms of pristine cathode materials in support of its efforts. In addition to implementing a lean manufacturing vision for ALD coated materials, PCT’s (Forge Nano) R&D operations will be developing next generation coatings for advanced cathode materials for Li-ion and other types of batteries and capacitor systems. This award represents a win for the entire vehicular battery value chain. A list of awarded projects is available here.

Friday, November 4, 2016

ALD NanoSolutions Reports Banner Year as Its ALD Technology Helps Fast-Track Advanced Materials From Concept to Commercialization

BROOMFIELD, Colorado – Nov. 4, 2016 – Today, ALD NanoSolutions (ALD Nano), the pioneer and market leader in Atomic Layer Deposition (ALD) technology on particles, reported a banner year on multiple fronts. The company partners with leading global materials companies to commercialize ALD advanced materials that significantly improve the performance, safety and other characteristics of end products in industries like lighting, batteries, sensors, life sciences and catalysts. 2016 highlights include new patents, deeper customer engagements, expanded manufacturing space, and new reactors to increase production capacity. The momentum illustrates how ALD Nano is harnessing the immense near-term market opportunities for its proprietary ALD technologies outside of ALD’s traditional deployment in the semiconductor industry. 

 
Leading with Differentiated Intellectual Property (IP)
Major 2016 milestones reinforced ALD Nano’s pioneering development and leadership in ALD for control of surface properties at the atomic level for unique functionality of particles and other materials. The company obtained new patents, including some from the University of Colorado Boulder (CU Boulder), its R&D partner since inception. This brings ALD Nano’s total patent holdings to 28 issued and 14 pending. The new IP heightens the market value and cost-effective use of its “Particle ALD” and “Polymer ALD” to create advanced materials. 



An important new patent1 covers an ALD method to deposit inorganic films on organic polymer surfaces. For industries like OLED displays and lithium-ion batteries, the innovation promises breakthrough benefits that could displace other technologies. The Polymer ALD technology could better protect battery electrode separators from overheating and enable next-generation life-science tools, among other applications. 

Another new patent2 is for Particle ALD use with super capacitor electrodes, and an in-license3 from CU Boulder for additional applications of ALD for batteries. Together, they strengthen the company’s position in the energy storage market. A further patent4 covers the use of an ALD method to apply a ceramic coating to implantable medical devices. This expands ALD Nano’s position in the life sciences industry. The company also filed a patent5 internationally for its revolutionary Particle ALD continuous flow reactor system. This allows for large-scale, cost-effective Particle ALD advanced materials production.

Enabling Innovation for Manufacturers of Lithium-Ion Batteries and LED Lighting
A standout 2016 highlight was the first commercial application of Particle ALD for Cathode Active Materials (CAMs) used to produce lithium-ion batteries. The breakthrough was achieved thanks to CU Boulder’s extensive R&D and ALD Nano’s proprietary and robust IP portfolio, coupled with the company’s strategic partnership with a leading battery materials company. Particle ALD is the most effective surface modification method available for CAMs. The ALD-enabled CAMs will dramatically improve performance, extend cycle life and enhance the safety of batteries for use in consumer electronics, electric vehicles and grid storage.

Also in 2016, the company began commercial production of Particle ALD phosphors for a Fortune Global 500 customer, following a multi-year collaboration. The ALD advanced material significantly extends the brightness lifetime for LED lights, while using a fraction of the coating material required for other deposition methods.

Expanding Infrastructure to Address Growing Demand for ALD Solutions
With its accumulating IP, ALD Nano is expanding and deepening engagements with customers. To support the momentum, the company doubled manufacturing space at its headquarters in Colorado, and added new reactors to increase production capacity. Headcount has also grown in the last 12 months.

CEO Mike Masterson called 2016 a transformative year for ALD Nano: “Our growth this year coincides with the consistently superior performance of our ALD technology in many markets. This validates our early vision and is now guiding our execution strategy to create ALD advanced materials in partnership with leading sales channel partners and customers. We’ll enter 2017 firmly positioned with differentiated technology and expertise to help such companies achieve their technology and cost-of-production goals. Our growth is a tribute to the steady efforts of our team, and the extraordinary innovation contributed by each individual.”

New ALD Nano Patents
1 US Patent 9,376,750
2 US Patent 9,406,449
3 US Patent 9,196,901
4 US Patent 9,279,120
5 US Application 62/175,964

About ALD
ALD is the sequential vapor phase material deposition method that forms chemically bonded, high-purity, conformal, ultra-thin films of controlled nanometer thickness. ALD generates less waste than other deposition techniques such as chemical vapor deposition, giving customers a sustainable and cost-of-ownership edge, while helping to reduce overall costs. The atomic level precision of ALD on particles, polymers and other substrates enables new or better applications of materials resulting in ALD advanced material solutions. Devices such as consumer electronics are getting smaller and more complex, requiring novel materials to solve critical issues for marketplace adoption.

About ALD NanoSolutions
ALD NanoSolutions (ALD Nano) is creating cost-effective advanced materials that are transforming industries such as lighting, energy storage, consumer electronics, life sciences, fuel catalysts, water purification, sensors, and more. We’re the leader in Atomic Layer Deposition (ALD) technology on particles, with broad IP covering polymers and MEMS, as well. We partner with world-leading companies that leverage our material designs and reactor systems to innovate products that benefit consumers globally. For more than a decade, we have commercialized innovative ALD technologies developed internally and through research conducted at the University of Colorado Boulder. We’re headquartered in Broomfield, Colorado.

Company Contact: Mike Masterson; mmasterson@aldnanosolutions.com
Media Contact: Jane Evans-Ryan; Genuity PR; jane@genuitypr.com

Wednesday, October 12, 2016

ALD used in new 3D design for mobile microbatteries

Nanowerk News reports: In the race towards miniaturization, a French-US team-mostly involving researchers from the CNRS, Université de Lille, Université de Nantes and Argonne National Laboratory (US) as part of the Research Network on Electrochemical Energy Storage (RS2E)1-has succeeded in improving the energy density of a rechargeable battery without increasing its size (limited to a few square millimeters in mobile sensors).

Atomic Layer Deposition of Functional Layers for on Chip 3D Li-Ion All Solid State Microbattery

Manon Létiche, Etienne Eustache, Jeremy Freixas, Arnaud Demortière, Vincent De Andrade, Laurence Morgenroth, Pascal Tilmant, François Vaurette, David Troadec, Pascal Roussel, Thierry Brousse and Christophe Lethien
 
Advanced Energy Materials, Version of Record online: 11 OCT 2016

Supporting Information : LINK
 
 (Graphical abstract Advanced Energy Materials)
 
Nowadays, millimeter scale power sources are key devices for providing autonomy to smart, connected, and miniaturized sensors. However, until now, planar solid state microbatteries do not yet exhibit a sufficient surface energy density. In that context, architectured 3D microbatteries appear therefore to be a good solution to improve the material mass loading while keeping small the footprint area. Beside the design itself of the 3D microbaterry, one important technological barrier to address is the conformal deposition of thin films (lithiated or not) on 3D structures. For that purpose, atomic layer deposition (ALD) technology is a powerful technique that enables conformal coatings of thin film on complex substrate. An original, robust, and highly efficient 3D scaffold is proposed to significantly improve the geometrical surface of miniaturized 3D microbattery. Four functional layers composing the 3D lithium ion microbattery stacking has been successfully deposited on simple and double microtubes 3D templates. In depth synchrotron X-ray nanotomography and high angle annular dark field transmission electron microscope analyses are used to study the interface between each layer. For the first time, using ALD, anatase TiO2 negative electrode is coated on 3D tubes with Li3PO4 lithium phosphate as electrolyte, opening the way to all solid-state 3D microbatteries. The surface capacity is significantly increased by the proposed topology (high area enlargement factor – “thick” 3D layer), from 3.5 μA h cm−2 for a planar layer up to 0.37 mA h cm−2 for a 3D thin film (105 times higher).

Saturday, June 25, 2016

Development of safe and durable high-temperature lithium-sulfur batteries by ALD

(From Nanowerk News) Safety has always been a major concern for electric vehicles, especially preventing fire and explosion incidents with the best possible battery technologies. Lithium-sulfur batteries are considered as the most promising candidate for EVs due to their ultra-high energy density, which is over 5 times the capacity of standard commercial Li-ion batteries. This high density makes it possible for electric vehicles to travel longer distances without stopping for a charge. 
 
 
Scheme of MLD alucone coated C-S electrode and cycle performance of stabilized high temperature Li-S batteries. (Figure from Nanowerk News)

However, batteries operating at the high temperatures necessary in electric vehicles presents a safety challenge, as fire and other incidents become more likely.

Prof. Andy Xueliang Sun and his University of Western Ontario research team, in collaboration with Dr. Yongfeng Hu and Dr. Qunfeng Xiao from the Canadian Light Source, have developed safe and durable high-temperature Li-S batteries using by a new coating technique called molecular layer deposition (MLD) technology for the first time. This research has been published in Nano Letters ("Safe and Durable High-Temperature Lithium–Sulfur Batteries via Molecular Layer Deposited Coating").


Read more: Development of safe and durable high-temperature lithium-sulfur batteries

Saturday, May 7, 2016

Missouri S&T Team boosts lithium-ion battery performance with ALD

Researchers Missouri University of Science and Technology are working to solve the problem of short-life of lithium-ion batteries like those used in laptops and cellphones, making them reliable and longer-lasting using a atomic layer deposition. This study was carried out using a fluidized bed reactor.

Science Daily reports the following:

"Dr. Xinhua Liang, assistant professor of chemical and biochemical engineering at Missouri S&T, leads the study to dope and coat lithium magnesium nickel oxygen (LMNO) with iron oxide through ALD -- at the same time. Doping means adding an element or compound into the crystalline structure, or lattice, filling in the gaps in the LMNO. Coating is what it sounds like, putting ultra-thin layers of iron oxide around the whole compound. Rajankumar Patel, a Missouri S&T Ph.D. candidate in chemical engineering who will graduate next week, did the majority of the experimental work in the project


TEM images of (a) clean edge of an uncoated LiMn1.5Ni0.5O4 particle, and (b) ~3 nm of conformal iron oxide film coated on one LiMn1.5Ni0.5O4 particle after 160 cycles of iron oxide ALD, (c) cross sectional TEM image of one LiMn1.5Ni0.5O4 particle with 160 cycles of iron oxide ALD, (d) Fe element mapping of cross-sectioned surface by EDS, and (e) Fe EDS line scanning along the red line as shown in (c). TEM image indicates that conformal iron oxide films were coated on primary LiMn1.5Ni0.5O4 particle surface. EDS mapping and EDS element line scanning indicates that Fe was doped in the lattice structure of LiMn1.5Ni0.5O4. (From Open Source - Scientific Reports 6, Article number: 25293 (2016), doi:10.1038/srep25293)


The operating voltage window of LMNO makes it a potential candidate for use in hybrid electric vehicles (HEV). However, it has not gained commercial usability in HEV because of high-capacity fade during cycling at elevated temperatures and manganese(3+) dissolution by hydrogen fluorine.

"Unlike current research practice that either covers the particles' surface with insulating film or dopes the particles to improve the performance of the battery," Liang says, "this ALD process combines the coating and doping processes into one, and applying this technique makes rechargeable lithium-ion batteries last longer."

"This is the first report for a unique phenomenon of ionic iron entering the lattice structure of LMNO during the ALD coating process," Patel says.

Full story: https://www.sciencedaily.com/releases/2016/05/160505105220.htm and Open Source article below published in Scientific Reports.

Employing Synergetic Effect of Doping and Thin Film Coating to Boost the Performance of Lithium-Ion Battery Cathode Particles

Rajankumar L. Patel, Ying-Bing Jiang, Amitava Choudhury & Xinhua Liang

Scientific Reports 6, Article number: 25293 (2016), doi:10.1038/srep25293

Atomic layer deposition (ALD) has evolved as an important technique to coat conformal protective thin films on cathode and anode particles of lithium ion batteries to enhance their electrochemical performance. Coating a conformal, conductive and optimal ultrathin film on cathode particles has significantly increased the capacity retention and cycle life as demonstrated in our previous work. In this work, we have unearthed the synergetic effect of electrochemically active iron oxide films coating and partial doping of iron on LiMn1.5Ni0.5O4 (LMNO) particles. The ionic Fe penetrates into the lattice structure of LMNO during the ALD process. After the structural defects were saturated, the iron started participating in formation of ultrathin oxide films on LMNO particle surface. Owing to the conductive nature of iron oxide films, with an optimal film thickness of ~0.6 nm, the initial capacity improved by ~25% at room temperature and by ~26% at an elevated temperature of 55 °C at a 1C cycling rate. The synergy of doping of LMNO with iron combined with the conductive and protective nature of the optimal iron oxide film led to a high capacity retention (~93% at room temperature and ~91% at 55 °C) even after 1,000 cycles at a 1C cycling rate.

Wednesday, March 30, 2016

Picosun’s ALD solutions at Imec transform battery technology

ESPOO, Finland, 30th March, 2016 – Picosun Oy, the leading supplier of advanced ALD (Atomic Layer Deposition) thin film coating technology, now provides ALD equipment to transform battery manufacturing. 
 
The sustainable energy economy of the future, greener transportation, and the increasing number of portable, mobile and personal electronic devices all require improved means for local energy storage. Nanostructured, solid-state thin film batteries offer a disruptive solution for this. Replacing traditionally used liquid materials in the battery with all solid layers improves the battery safety and lifetime. Thin and flat geometry makes the batteries easily integrated in e.g. wearable electronics, whereas their nanoscale tailored internal structure enables high energy storage capacity.

ALD is an ideal way to prepare the highly conformal, dense, uniform, and structurally and chemically exactly controlled functional layers in the core of the battery stack. Using PICOSUN™ ALD equipment, imec, Belgium, has now developed a solution to deposit a novel, solid electrolyte for lithium ion thin film batteries.

“Our aim at Picosun is to utilize ALD technology for better tomorrow. For example, faster and smoother data handling and communications, and the increasing number of mobile, wearable personal health monitoring devices require compact, efficient, and reliable power delivery solutions. The ALD technology we have now developed with imec for manufacturing of safe and long-lasting thin film batteries is an important breakthrough into a huge market area still relatively new to ALD. We are happy to provide the latest manufacturing solutions to our customers in this field and to see their most advanced products powering our everyday electronics,” states Juhana Kostamo, Managing Director of Picosun.

Tuesday, March 29, 2016

Atomic/Molecular Layer Deposition of Lithium Terephthalate for Li-Ion Battery Anodes

EurekAlert.org reports: When microbatteries are manufatured, the key challenge is to make them able to store large amounts of energy in a small space. One way to improve the energy density is to manufacure the batteries based on three-dimensional microstructured architectures. This may increase the effective surface inside a battery- even dozens of times. However, the production of materials fit for these has proven to be very difficult.


Aalto University Researchers testing the material on coin cells. (Mikko Raskinen / Aalto University)

Researches at Aalto University, Helsinki Finland, has develooped a ALD/MLD deposition process for Li-terephthalate, which has been published in Nanoo Letters (below).

- ALD is a great method for making battery materials fit for 3D microstructured architectures. Our method shows it is possible to even produce organic electrode materials by using ALD, which increases the opportunities to manufacture efficient microbatteries, says doctoral candidate Mikko Nisula from Aalto University. (EurekAlert.org)

Atomic/Molecular Layer Deposition of Lithium Terephthalate Thin Films as High Rate Capability Li-Ion Battery Anodes

Nano Lett., 2016, 16 (2), pp 1276–1281




We demonstrate the fabrication of high-quality electrochemically active organic lithium electrode thin films by the currently strongly emerging combined atomic/molecular layer deposition (ALD/MLD) technique using lithium terephthalate, a recently found anode material for lithium-ion battery (LIB), as a proof-of-the-concept material. Our deposition process for Li-terephthalate is shown to well comply with the basic principles of ALD-type growth including the sequential self-saturated surface reactions, a necessity when aiming at micro-LIB devices with three-dimensional architectures. The as-deposited films are found crystalline across the deposition temperature range of 200–280 °C, which is a trait highly desired for an electrode material but rather unusual for hybrid inorganic–organic thin films. Excellent rate capability is ascertained for the Li-terephthalate films with no conductive additives required. The electrode performance can be further enhanced by depositing a thin protective LiPON solid-state electrolyte layer on top of Li-terephthalate; this yields highly stable structures with capacity retention of over 97% after 200 charge/discharge cycles at 3.2 C.

Sunday, August 30, 2015

Researchers at Case Western Reserve University directly photo-charged lithium batteries with 7.8 percent efficiency

As reported bu Phys.org : Researchers at Case Western Reserve University, however, have wired four perovskite solar cells (PSC) in series to enhance the voltage and directly photo-charged lithium batteries (LIB) with 7.8 percent efficiency—the most efficient reported to date, the researchers believe.

The research, published in the Aug. 27 issue of Nature Communications, holds promise for cleaner transportation, home power sources and more.

Efficiently photo-charging lithium-ion battery by perovskite solar cell [Open Access]

Jiantie Xu, Yonghua Chen & Liming Dai Nature Communications 6, Article number:8103 doi:10.1038/ncomms9103

 Schematic diagram of the fabricated system of PSC–LIB. (Nature Communications 6, Article number:8103)

Abstract:  Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.


The structure and the preparation procedures of CH3NH3PbI3 perovskite films (Supplementary information)

Sunday, August 16, 2015

HERALD Workshop - ALD for Batteries, Gent, Belgium September 15-16

Workshop - ALD for Batteries

Co-organiser 

 cost logoHerald

Program

Tuesday, September 15, 2015 - Het Pand
09:30   Registration
10:00   Philippe Vereecken, IMECInvited Talk - Conformal deposition for 3D thin-film batteries: requirements and opportunities
10:45   Sebastien Moitzheim, IMECSpatial ALD of TiO2 for 3D thin-film batteries
11:15   Felix Mattelaer, Ghent University
ALD of Manganese oxides
11:45   Mikko Ritala, University of HelsinkiPreparation of lithium containing ternary oxides by solid state reaction of atomic layer deposited thin films
12:15   Lunch
13:30   Maarit Karppinen, Aalto University
Invited Talk 
14:15   Kevin van de Kerckhove, Ghent University
Molecular Layer Deposition of Titanicone
14:45   Miia Mäntymäki, University of Helsinki
15:15   Break
15:45   Adriana Creatore, TU Eindhoven
Invited Talk - Plasma ALD of Li-based materials
16:30   Thomas Dobbelaere, Ghent University
ALD of phosphates
17:00   Closing remarks

Wednesday, September 16, 2015 - Dept. Solid State Sciences

09:00   Ola Nilsen, University of Oslo
Invited Talk - ALD of Li-containing compounds
09:45   Amund Ruud, University of Oslo
High rate iron phosphates by ALD
10:15   Break
10:45   Ruud Van Ommen, TU Delft
ALD on battery particles
11:30   Geert Rampelberg, Ghent University
Thermal and plasma enhanced ALD on powders
12:00   Lunch
13:30   Tour of the Lab 

Registration

Participation is free of charge (limited number of places):https://webapps.ugent.be/eventManager/events/cocoonworkshopbatteries
Registration will be possible from 1 July 2015. Please register before 1 September 2015. 

Location

The workshop takes place at Het Pand (on Tuesday) and the department of Solid State Sciences (on Wednesday).

Tuesday, September 15, 2015

Het Pand, Ghent University
Onderbergen 1
9000 Gent, Belgium
By public transport:
  • From station Gent Sint-Pieters:Tram 1 (every 6 minutes) or tram 24 (every 20 minutes). Exit at Korenmarkt.
  • From Gent ZuidTram 4 (every 6 minutes), tram 24 (every 20 minutes) or bus 17 (every 30 minutes). Exit at Korenmarkt.
By Car:
  • Follow the parking signage to parking P7 Sint-Michiels. The parking is located at 50 meter from Het Pand. Take the exit Onderbergen and you come out in the wilderoosstraat, opposite Het Pand.
  • An alternative parking is P8 Ramen. From here it's about 5 minutes on foot to Het Pand.

Wednesday, September 16, 2015

Department of Solid State Sciences, Ghent University
Krijgslaan 281 - Building S1
9000 Gent, Belgium

Contact

Department of Solid State Sciences, Ghent University
Krijgslaan 281 - Building S1
9000 Gent, Belgium
Phone: +32 (0)9 264 43 54
Fax: +32 (0)9 264 49 96

Flyer

Sponsors

 iwt logo
FWO



Wednesday, August 12, 2015

Ultratech Cambridge NanoTech announced that the 1000th paper using one of their ALD tools

I previously posted this paper (here) and it turns out that this is as announced today by Ultratech Cambridge NanoTech, the 1000th peer-reviewed paper written on its ALD systems was published in July 2015 inChemistry of Materials



The paper entitled "Atomic Layer Deposition of the Solid Electrolyte LiPON" was authored by Alexander Kozen, Ph.D, a member of the Nanostructures for Electrical Energy Storage (NEES) group at the University of Maryland. This milestone figure underscores the fact that today, almost one-fifth of the total peer-reviewed ALD publications worldwide, since the founding of the company in 2003, have been written based on using Ultratech-CNT systems (based on Web of Science analysis). 



University of Maryland Professor and principal investigator at the Energy Frontier Research Center (EFRC) Gary Rubloff said, "The performance and flexibility of our Ultratech Fiji systems have driven our group's nano research since 2011. The role played by these systems has been critical in many of the advances made in Nanostructures for Electrical Energy Storage (NEES)--our DOE, Energy Frontier Research Center. The research undertaken has involved a variety of collaborations across the Center to exploit ALD films as cathode, anode, current collector, solid electrolyte, and passivation/stabilization layers distributed as highly conformal, high quality layers on 3-D structures in the most demanding nano-geometries. As part of our most recent work, we have just developed the first reported ALD process for lithium phosphorous oxy-nitride (LiPON), a well-known, solid-state electrolyte for safe batteries. Through the use of real-time, in-situ ellipsometry, the process was optimized in a systematic fashion. ALD allows us to grow very thin LiPON layers that we are applying to passivation of high-energy lithium anodes as well as to solid-state batteries."


Ultratech-CNT Vice President of Research and Engineering Ganesh Sundaram, Ph.D. said, "While the traditional gauge of system productivity has focused on metrics such as wafer output, we have chosen to concentrate on creating products which motivate and enable intellectual output. The 1000th paper milestone attests to the fact that the Ultratech-CNT ALD systems are at the forefront for generating high quality, and strongly-cited research in this fast growing field. Furthermore, the large library of research papers based on our systems also provides substantial benefits to new researchers entering the field as they will be able to take advantage of the solid foundation of published research that underpins these ALD systems."



Dr. Kozen is part of The Rubloff Group at the University of Maryland where Professor Gary Rubloff heads the Nanostructures for Electrical Energy Storage (NEES), Energy Frontier Research Center (EFRC), a program of the Department of Energy (DOE). The paper was published in Chemistry of Materials (DOI: 10.1021/acs.chemmater.5b01654).

Sunday, August 2, 2015

Atomic Layer Deposition of the Solid Electrolyte LiPON for 3D solid state nanobatteries

Since its discovery in the early 1990s, LiPON (lithium phosphorus oxynitride) has been one of the most popular solid state electrolytes used for planar lithium ion microbatteries. University of Maryland demonstrate an ALD process for the solid electrolyte lithium phosphorousoxynitride (LiPON) using lithium tert-butoxide (LiOtBu), H2O, trimethylphosphate (TMP), and plasma N2 (PN2) as precursors using av Ultratech / Cambridge Naotech Fiji 200 PEALD reactor. The results are published in the Open Access article below.


ANSLab at the University of Maryland. Shown, from left to right, is a Cambridge Nanotech Fiji F200 ALD Tool (Luigi), a glovebox for working with air-sensitive materials, a rotary wafer transporter (R2P2), thermal evaporation chamber, and second Cambridge Nanotech Fiji F200 ALD tool (Mario). (source: http://www.terpconnect.umd.edu/~ackozen/Research.html)

Atomic Layer Deposition of the Solid Electrolyte LiPON (OPEN ACCESS)

Alexander C. Kozen, Alexander J. Pearse, Chuan-Fu Lin, Malachi Noked, and Gary W. Rubloff

Chem. Mater., Article ASAP
DOI: 10.1021/acs.chemmater.5b01654




We demonstrate an atomic layer deposition (ALD) process for the solid electrolyte lithium phosphorousoxynitride (LiPON) using lithium tert-butoxide (LiOtBu), H2O, trimethylphosphate (TMP), and plasma N2 (PN2) as precursors. We use in-situ spectroscopic ellipsometry to determine growth rates for process optimization to design a rational, quaternary precursor ALD process where only certain substrate–precursor chemical reactions are favorable. We demonstrate via in-situ XPS tunable nitrogen incorporation into the films by variation of the PN2dose and find that ALD films over approximately 4.5% nitrogen are amorphous, whereas LiPON ALD films with less than 4.5% nitrogen are polycrystalline. Finally, we characterize the ionic conductivity of the ALD films as a function of nitrogen content and demonstrate their functionality on a model battery electrode—a Si anode on a Cu current collector.