Showing posts with label Korea. Show all posts
Showing posts with label Korea. Show all posts

Thursday, February 2, 2023

Dutch ALD euipment leader ASM to invest $100 mil. in Korea for facility expansion

Korea’s industry ministry said Thursday it agreed with Dutch semiconductor equipment supplier ASM to boost cooperation for the firm’s planned investment of $100 million to build a production factory and a research and development center in Korea.



The two sides signed a memorandum of understanding (MOU) in Seoul on the day, which calls for joint work for the smooth implementation of the corporate investment worth $100 million through 2025, according to the Ministry of Trade, Industry and Energy.

The company is reviewing building a second factory that produces equipment for atomic layer deposition, a key process in chips manufacturing, and the expansion of its RD center in Korea.

Currently, ASM is headquartered in the city of Hwaseong, Gyeonggi Province, some 40 kilometers south of Seoul.

In October, ASM announced a plan to invest $100 million in Korea, but the amount has surged “as discussions between the two sides have developed,” a ministry official said.

Following the MOU signing ceremony, Industry Minister Lee Chang-yang and ASM CEO Benjamin Loh held a meeting for discussions on the envisioned expansion of bilateral cooperation.

“The investment is expected to help Korea better ensure stable supply chains of the sector and boost exports,” the ministry said in a release. “The government will actively extend support, such as providing incentives and resolving difficulties.” (Yonhap)


Source: Dutch chip firm ASM to invest $100 mil. in Korea for facility expansion

Monday, October 10, 2022

NCD’s ALD technology and equipment for oxidation barrier of copper-based substrates

Copper is a metal used widely as the main material of Printed Circuit Board (PCB) and Lead Frame. But it is required to protect the oxidation because copper is easily oxidized in the condition of humidity, temperature, and pH, etc.

Electroless Nickel Immersion Gold (ENIG), Organic Solderability Preservative (OSP), Immersion Sn or Ag (ImSn or ImAg) is generally used to prevent oxidation of opened copper area after Solder Masking in PCBs. The lead Frame is protected from oxidizing by plating Au, Ag, Pd, and Ni after Lead Frame forming.

Recently, many groups have studied about preventing oxidation on the surface of copper by various corrosion protection layers of ALD metal oxides. Especially, Appling Al2O3 layer to the oxidation barrier is actively being researched.


 < Surface images and TEM & EDS of Cu plates coated by ALD thin films after annealing test >

After depositing Al2O3 layers on Cu-plated plates with various film thicknesses and process temperatures, the oxidation and corrosion behavior of the coated copper was examined with different annealing times in the oven. There was no oxidation before annealing, but after annealing for 1hr, as the sample’s thickness lowered and process temperature decreased, the oxidation happened and increased gradually. There was no oxidation on the plates coated with 50~60 ALD cycles and at process temperatures of 70~100 after annealing for 5hr, and oxidation didn’t occur only in the case of 60 cycles and 100 after annealing for 24hr.

To analyze the change of the structure and confirm the oxidation behavior, TEM and EDS were measured on 5 and 10nm Al2O3 coated Cu plates at 100. The results showed that a thick Cu oxide layer was built by combining Cu coming out through the 5nm Al2O3 layer and outer oxygen after annealing.

On the other side, in the case of depositing 10nm Al2O3 film, the ALD layer was maintained after annealing, so Cu oxide layer wasn’t built on the surface. Therefore it confirmed that 10nm ALD Al2O3 layer showed an excellent corrosion barrier.


 

< ALD equipment for Lead Frame and PCB >

Copper-based PCBs and Lead Frames for semiconductors may have great properties to prevent humidity and oxygen by ALD-coated corrosion barriers.    

NCD has high volume and large area ALD equipment and technology for this kind of application. ALD tools for Lead Frames could be used by adding a dedicated transfer module on the base of Lucida GSH Series. And NCD has been developing new ALD equipment, Lucida GP Series, for large and flexible PCB substrates. NCD would extend the new ALD application area continuously through constant R&D.

Source: http://www.ncdtech.co.kr/2018/bbs/board.php?bo_table=eng_board_05&wr_id=57

 

Tuesday, June 1, 2021

South Korean equipment makers recorded mixed results in the first quarter of 2021

출처 : THE ELEC, Korea Electronics Industry Media(http://thelec.net) - South Korean equipment makers recorded mixed results in the first quarter of 2021.

  • Fab equipment vendors posted high growth, while display equipment firms underperformed.
  • Fab equipment makers benefited from aggressive spending by semiconductor companies.
  • CVD/ALD equipment companies showed good growth, see below (Jusung, Wonik IPD, Eugene Technologies

Semes, Samsung Electronics’ fab equipment subsidiary, recorded 870.6 billion won in sales, an increase of 62.3% from a year prior. It recorded 112.8 billion won in operating income, an increase of 40.5% over the same time period. The growth likely stems from Samsung starting to put in equipment to its P2 chip line at its Pyeontaek plant during the quarter. Overheat transport accounted for 60% of the sales recorded by Semes during the quarter.

SFA recorded 355.6 billion won in sales and 42.3 billion won in operating income, a drop of 3.3% and 1.6%, respectively, a year prior. Non-display business accounted for 65.1% of its sales. SFA, which previously focused on display kits, managed to record level earnings to a year prior thanks to other business areas.


Wonik IPS recorded 254.5 billion won in revenue and 24.2 billion won in operating income, a surge of 39.9% and 68.1%, respectively, from a year prior. The firm previously focused on fab equipment for use in memory chip production. But it has begun supplying kits for foundry beginning last year, which helped growth.

Eugene Technology recorded 100.7 billion won in revenue and 30.7 billion won in operating income. The company recorded an operating margin rate of 30.5%. Its LPCVD equipment supplied to SK Hynix for the latter’s M16 DRAM fab led the growth.

Jusung Engineering posted 75.3 billion won in sales in the quarter, double that of the year prior. It turned a profit from a year prior and posted 16 billion won in operating income. The company won the order for atomic layer deposition kits from SK Hynix for use in next-generation DRAMs. Jusung is the sole supplier of the kits.

Hanmi Semiconductor recorded 70.9 billion won in sales, a jump of 79% from a year prior. Its operating income increased 160% year-on-year to 19.3 billion won. It won 22 orders during the quarter. It has signed supply deals with SK Hynix, Amkor Technology Korea, ASE, NXP, Nanya, SPIL and others for a combined worth of 87 billion won.

YIK recorded 67.5 billion won in sales and 9.7 billion won in operating income, a jump of 99.7% and 177.1%, respectively, from a year prior. The firm mainly provides electrical die sorting equipment. The firm is seeing more orders from Samsung, having signed a 155.3 billion won deal with the tech giant in the first quarter alone.

South Korean fab equipment makers are expected to post solid growth throughout 2021 from increased spending this year by Samsung and SK Hynix. SK Hynix had said in the conference call for the first quarter that it plans to execute some of its spending it planned for 2022 earlier to this year.

SEMI is expecting global fab equipment spending to increase 15.5% this year to US$70 billion. Meanwhile, South Korean display equipment makers underperformed during the first quarter.

Samsung Display and LG Display have been conservative with their spending due to uncertainties surrounding the display market. But increased spending in OLED from Chinese panel makers such as BOE and Tianma staved off a huge dip in profitability.

Only few companies recorded growth, such as AP Systems, which saw sales drop 6.9% year-on-year but operating income surge 53.2% over the same time period. The company benefited from laser annealing equipment supplied to BOE for the B12 line.

Youngwoo DSP saw a surge in its operating income from supplies to its Chinese customers. KC Tech saw sales jump 21.1% but operating income remained flat. Top Engineering saw 9.6 billion won in operating loss from the 6.1 billion won operating loss posted by subsidiary Powerlogics. Dong A Eltek recorded 2.3 billion won in operating loss, though sales doubled. The firm said increased cost from the pandemic stunted growth.

Charm Engineering continued to record loss. HB Technology, Toptec and Philoptics all turned to the red. 

Local display equipment makers are expected to see a turnaround starting in the fourth quarter when Samsung Display and LG Display decide on new spending plans around the same time.


Friday, June 5, 2020

Thermal ALD IGZO Properties for LTPO TFTs by NCD

 
LTPS TFTs have been applied to most of the display for smart phones which consume most of the power for their operating because they have high electron mobility showing fast response time even if they have higher power consumption than that of IGZO TFTs,

Recently applications of LTPO (Low Temperature Polycrystalline Oxide) TFTs have been increasing to save the powder consumption of mobile and wearable devices. LTPO TFTs are the device combining LTPS TFTs with fast speed and Oxide TFTs with low leakage current. That is, switching uses Oxide TFTs because of being on/off the light fast and operating uses LTPS TFTs due to changing display rapidly with control of the mount of light.

A lot of smart device manufacturers including Apple are using or will use LTPO displays for their latest smart watches because their power consumption can decrease ~40%. Also, many manufacturers like Samsung and Apple have actively been developing their high-end smart phones equipped with the LTPO displays to make the power usage optimized.



General LTPO Structure and Properties

IGZO thin films used for Oxide TFTs have typically been processed by sputtering, but this method continuously has been showing lots of issues such as their bad thickness and composition uniformity, degradation of the physical and electrical properties due to plasma damage and the stability problem of targets. However using thermal ALD-IGZO, it is possible to deposit high quality thin films because of no plasma damage in process, low process temperature, and atomic scale controllability of thickness and composition.


Thermal ALD IGZO Properties

It is possible to get exact target atomic compositions of IGZO thin films by controlling the ratios of ALD cycle of respective sources in thermal ALD. Therefore this method could show the superior device properties to that by sputtering because it enables to control easily and exactly the most suitable atomic composition for the respective device structure of customers.

NCD has been developing high throughput batch IGZO-ALD system with its creative technology enabled to adapt the target atomic composition for respective devices. NCD could provide the competitiveness of excellent quality and the high productivity for LTPO TFTs including IGZO thin films using Lucida GD Series ALD which could process many and large area substrates at once.


NCD’s LucidaTM GD Series ALD

Source: http://www.ncdtech.co.kr/2018/bbs/board.php?bo_table=eng_board_05&wr_id=51

Tuesday, November 13, 2018

NCD launch new updated website for ALD technology and equipment

Updated website NCD for ALD technology and equipment: www.ncdtech.co.kr

NCD updated its website with re-formation and company promotional video clip for the introduction and main equipment.


Wednesday, March 7, 2018

NCD Contracted with Risen Energy to supply 1.8GW solar cell ALD equipment

NCD recently signed the largest contract with Risen Energy, a Chinese solar cell manufacturer, to provide ALD equipment in the next six months. This agreement is to supply 1.8GW solar cell manufacturing equipment, so it indicates that the superiority and reliability of NCD’s ALD equipment has been fully proven to the customer.

This system is (Lucida GS Series + Automation), the main product of NCD's solar division, to increase the efficiency of solar cells by depositing high quality Al2O3 ALD thin films. Lucida GS Series is batch type ALD deposition equipment that forms backside passivation of Al2O3 on multiple wafers and can process more than 4.500 wafers (@ 4nm thickness) of 156mm x 156mm size per an hour. By applying Lucida GS Series in the production of solar cells, customers can dramatically lower the production cost of high efficiency solar cells due to the high-volume productivity, high yield, efficient gas consumption and low maintenance cost compared to competitors.

Lucida GS Series has become the first choice for ALD process in high efficiency solar cell manufacturing, based on its advantages and excellence. NCD expects to record the best sales by the rapid sales growth in the solar sector in 2018. 


(Lucida GS Series + Automation)