Sunday, November 3, 2019

An ultrathin integrated nanoelectromechanical transducer based on ALD ferroelectric hafnium zirconium oxide

Nanomechanical resonators fabricated with MEMS technology that can operate in the super high frequency (3–30 GHz) or the extremely high frequency (30–300 GHz) regime could be of use in the development of: 
  • stable frequency references
  • wideband spectral processors
  • high-resolution resonant sensors. 
However, such operation requires the dimensions of the mechanical resonators to be reduced to tens of nanometres, and current devices typically rely on transducers, for which miniaturization and chip-scale integration are challenging. 
 
Recently (LINK), researchers at University of Florida were able to fabricate an ultrathin nanoelectromechanical transducer using 10 nm thin ferroelectric hafnium zirconium oxide (Hf0.5Zr0.5O2) films deposited by ALD on a Veeco CNT Fiji.
 
The figure below summarizes the fabrication process flow for implementation of the 70 nm Si nanomechanical resonators actuated using 10nm Hafnium Zirconium Oxide (Hf0.5Zr0.5O2) film.

MEMS manufacturing flow, as published in the Supporting information (free to download LINK) to Ghatge, M., Walters, G., Nishida, T. et al. An ultrathin integrated nanoelectromechanical transducer based on hafnium zirconium oxide. Nat Electron (2019) doi:10.1038/s41928-019-0305-3.
 
Recommended further reading : An ultrathin nanoelectromechanical transducer made of hafnium zirconium oxide, Tech Explore (LINK)

1 comment:

  1. Allegro Anti-Aging Cream For quite a long time anti-aging cream existed and now is attractiveness marketplace has recently been flooding.

    ReplyDelete