Saturday, August 2, 2014

Capillary flow layer-by-layer (CF-LbL) employed by MIT researchers for fast screening of films

Capillary flow layer-by-layer (CF-LbL) - An very interesting publication (ACS Nano, 2014, 8 (7), pp 6580–6589) from Massachusetts Institute of Technology (MIT) on liquid Layer-by Layer growth in a combinatorial approach for fast screening of thin films.

Capillary Flow Layer-by-Layer: A Microfluidic Platform for the High-Throughput Assembly and Screening of Nanolayered Film Libraries
Steven A. Castleberry, Wei Li, Di Deng, Sarah Mayner, and Paula T. Hammond
 
ACS Nano, 2014, 8 (7), pp 6580–6589, DOI: 10.1021/nn501963q
 
 
 
Abstract: Layer-by-layer (LbL) assembly is a powerful tool with increasing real world applications in energy, biomaterials, active surfaces, and membranes; however, the current state of the art requires individual sample construction using large quantities of material. Here we describe a technique using capillary flow within a microfluidic device to drive high-throughput assembly of LbL film libraries. This capillary flow layer-by-layer (CF-LbL) method significantly reduces material waste, improves quality control, and expands the potential applications of LbL into new research spaces. The method can be operated as a simple lab benchtop apparatus or combined with liquid-handling robotics to extend the library size. Here we describe and demonstrate the technique and establish its ability to recreate and expand on the known literature for film growth and morphology. We use the same platform to assay biological properties such as cell adhesion and proliferation and ultimately provide an example of the use of this approach to identify LbL films for surface-based DNA transfection of commonly used cell types.